
Accessing Relational Databases from the World Wide Web

Tam Nguyen V. Srinivasan

IBM Santa Teresa Laboratory IBM Santa Teresa Laboratory

555 Bailey Avenue 555 Bailey Avenue

San Jose, CA 95161 San Jose, CA 95161

minhtam@vnet .ibm. com srini@vnet .ibm. com

Abstract

With the growing popularity of the internet and the World

Wide Web (Web), there is a fast growing demand for access

to database management systems (DBMS) from the Web.

We describe here techniques that we invented to bridge the

gap between HTML, the standard markup language of the

Web, and SQL, the standard query language used to ac-

cess relational DBMS. We propose a flexible general pur-

pose variable substitution mechanism that provides cross-

language variable substitution between HTML input

and SQL query strings as well as between SQL result rows

and HTML output thus enabling the application developer

to use the full capabilities of HTML for creation of query

forms and reports, and SQL for queries and updates. The

cross-language variable substitution mechanism has been

used in the design and implementation of a system called

DB2 WWW Connection that enables quick and easy con-

struction of applications that access relational DBMS data

from the Web. An end user of these DB2 WWW applica-

tions sees only the forms for his or her requests and resulting

reports. A user fills out the forms, points and clicks to navi-

gate the forms and to access the database as determined by

the application.

1 Introduction

The World Wide Web (Web) is fast becoming the most

popular way of accessing the internet due to its easy

to use graphical interface and the ubiquitous HTTP

communication protocol. Figure 1 illustrates how

workstations are connected together using the World

Wide Web. Many universities, governmental agencies,

and business organizations have already realized that

there is an enormous potential in the Web, especially

since the internet already has tens of millions of users

and continues to grow exponentially in recent years.

Typically, an organization makes itself accessible to

the Web public by maintaining a home page on

Permission to make digitalhard copy of part or all of this work for personal
or classroom use is granted without fee provided that capies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGMOD ’96 6/96 Montreal, Canada
0 1996 ACM 0-89791 -794-419610006.. .$3.50

529

Wsb Browssrs on
Multiple Plsfforms

DB2 WWW Overview

Av
World Wide Web

_ [– (Internet) “—

P-----
J

e

m DBZF=WY

DS212

Figure 1: The World Wide Web

a web server that can be accessed from any other

location world-wide on the Web using a uniform

resource locator (URL), For example, the URL for the

IBM home page is http: //www. ibm. corn. This home

page can be used to provide up-to-date information

regarding existing products and services, new products

and services, software downloads, as well as to get

feedback from the Web public regarding various matters

like product support.

Business applications almost always require a

database management system (DBMS) for storage and

retrieval of the organization’s valuable data. More

precisely, Web applications for accessing a DBMS

typically involve the following steps:

1. Create an HTMLl fill-in form for the user.

2. Extract user inputs from HTML fill-in forms and

access any necessary data from the DBMS (both

read andlor update access 1s possible here).

3. Format the query results mto a desirable HTML

report form.

1HTML (HyperText Markup Language) [LEMA95] is the

markup description language of the World Wide Web and every

Web page is essentially a static or dynamically generated HTML

page.

4. Allow for additional accesses to the DBMS and

HTML pages, possibly from the hyperlinks embed-

ded in the reports.

So far in our discussion, we have assumed that a

Web page accessed using an URL is static (i.e., Web

pages are merely files stored in the server location). To

implement Web applications that access a DBMS, we

need to dynamically create Web pages as the result of

the user input and the database access. Indeed, the

Web provides a standard protocol for dynamic creation

of Web pages called the common gateway interface

(CGI) [CG195]. The CGI protocol enables the calling

of any executable program recognized by a Web server

using the URL syntax, Inputs from the Web client

are passed to the executable program, and the program

can generate Web pages that are displayed back at the

calling Web client. (The CGI interface is described in

more detail in Section 2.3 and is illustrated in Figure 4.)

One approach for building a Web application that

accesses a DBMS is to implement a stand-alone program

that accesses DBMS data and invoke it directly as a

CGI application from a URL. This approach has the

followinc disadvantages:

1.

2.

3.

4.

–“

the application programmer has to be knowledgeable

of the CGI protocol details and the DBMS program-

ming interfaces. The application program is affected

by any change in the CGI protocol or the DBMS

API.

The HTML text is intermixed with complex datas-

tructures and programming logic, making it less

readable.

Since CGI applications need to produce HTML out-

put, it is not easy to switch to newer HTML versions

with many new useful features like HTML 3.0 which

is now beginning to be introduced. Changing an ap-

plication’s output will involve changes to the code

even though the application logic and database ac-

cess remain unchanged.

Many applications in a client-server environment

have little or no application logic - they typically

need to generate SQL statements based on user in-

put and execute these SQL statements dynamically

against the DBMS. It is not known exactly what (or

how many) SQL statements will be executed before

the user provides input. To implement applications

like these, the formatting efforts might be significant

if one needs to write code to generate output forms.

We propose a general purpose solution to build a

large class of Web applications that access a DBMS.

Our solution has the following characteristics which we

feel are necessary in any approach to building Web

1.

2.

applications that access a DBMS.

“ New applications must be easy to build, preferably

no significant coding effort should be involved.

Applications must be easy to maintain and enhance

with new HTML versions. In addition they must be

shielded from changes to the CGI protocol.

530

3.

4.

5.

6.

7.

The full power of HTML (including the latest

versions) for creating input and result forms must be

available to the application developer. Ideally, the

application developer must be able to use a visual

HTML editor to construct the HTML forms.

The full power of SQL to access the relational DBMS

must be available including using a visual query tool

to construct the SQL queries needed to access the

DBMS.

A mechanism for transferring input variables from

the Web client (i.e., the user) to the SQL query (or

queries) that is accessing the DBMS.

A mechanism for substituting the result of a SQL

query into a report form for viewing the result. It

must be easy to redesign report formats using new

HTML features.

Allow for additional (related) queries and HTML

forms, possibly from the hyperlinks embedded in the

reports.

We propose a general purpose solution for building

Web applications that access databases using a page

layout paradigm, which encapsulates HTML, the stan-

dard markup language of the Web, and SQL, the stan-

dard query language of relational databases [SQL92].

To bridge the gap between HTML and SQL, we pro-

pose a flexible, general purpose variable substitution

mechanism that provides cross-language variable sub-

stitution between HTML input and SQL query strings

as well as between SQL result rows and HTML output,

thus enabling the application developer to use the full

capabilities of HTML for creation of query forms and

reports, and SQL for queries and updates. The variable

substitution mechanism that we describe is quite gen-

eral and has been already used for other purposes like

communicating between HTML and REXX [GERM94]

(and can be extended to be used between HTML and

PERL [WALL91]). We will focus here, however, exclu-

sively on HTML and SQL.

The cross-language variable substitution mechanism

mentioned above has been used in the design and imple-

mentation of a system called DB2 WWW Connection

that enables quick and easy construction of applications

that access relational DBMS data from the Web. The

application developer creates HTML forms and SQL

commands, and stores them in files (called macros) at

the Web server. Embedded variables are used to link the

SQL commands and the HTML forms within the same

macro. These macros get processed by the DB2 WWW

Connection run-time engine. Since DB2 WWW Con-

nection uses native HTML and SQL languages, various

visual tools may be used for creation of HTML forms

and for generation of the SQL query. An end user of

these DB2 WWW applications sees only the forms for

his or her requests and resulting reports. A user fills out

the forms, points and clicks to navigate the forms and

to access the database as determined by the application.

The rest of the paper is organized as follows, In

Section 2, the basic CGI architecture is described

along with how variable names are passed from the

Web client to the CGI application through the Web

server. Section 3 describes the cross-language variable

substitution scheme. In Section 4 we describe the

system, DB2 WWW Connection, that we built using

the cross-language substitution scheme. In Section 5,

we describe how DB2 WWW Connection handles real

world issues like security, multi-lingual Web pages, etc.,

that need to be addressed while building any application

for the Web. Section 6 describes related work in this

relatively new area. Finally, in Section 7 we present our

conclusions.

2 World Wide Web Fundamentals

Figure 1 illustrates a typical distributed computing

system using the Internet to connect client systems

executing Web clients (a.k.a browsers) to server systems

executing Web servers (a. k.a http daemons), Web

clients communicate with Web servers using the http

protocol. For the purpose of designing Web applications

that access a DBMS, it is necessary to have knowledge of

(i) how applications work on the Web, (ii) the methods

used to pass inputs from the Web client to the server,

and (iii) the support available in the web for writing

applications that create a Web page dynamically.

2.1 Steps in Using a Web Application

A Web application basically consists of a sequence of

accesses to Web pages based on interactive input from

a user. All accesses start with a user providing a URL

to a Web client that enables access to a certain Web

page on the Web. An application, therefore, consists of

the following steps which may be repeated any number

of times in a single application.

1. A user fires up a Web client (e.g,, Mosaic, Netscape,

WebExplorer) and uses it to access a URL.

2. The Web client uses the internet address of a host

(and a port number) which is present in the URL to

communicate with the Web server at that host and

port. The Web client provides the server with the

following information:

(a)

(b)

the URL itself, portions of which are used by the

server to determine the Web page to be returned

to the client,
user provided values for HTML input variables if

the URL was present in an already instantiated

Web pa e at the client, and
“!$(c) other m ormation (e.g., an encrypted password or

other security inform-ation if the Web client and

Web server are operating in a secure mode).

3.

4.

The server uses the URL and input variables

provided by the Web client to get at a Web page

that is shipped back to the client.

The Web client parses the Web page received

from the server and performs appropriate display

<TITLE>DB2 WWW URL Query </TITLE>

<hl>@ery URL Information</hi>

<p>

<P>

<FORM METHOD= llpostll

ACTION= ’’/cgbinidb2wwwww. exe/urlquery .d2v/report,, >

Please enter a search string:

<INPUT TYPE= ’’text” IJAME=’’SEARCH!! SIZE= 20>

<p>

Please select what field(s)

to search for the string above :

<P>

<INPUT TYPE= ’’checkbox” NAME= ’’USE_URL”

VALUE= ’’yes” CHECKED> URL

<IIJPUT TYPE= ’’checkboxlr NAME= ’’USE. TITLE1l 1

VALUE=” yes” CHECKED> Title

<INPUT TYPE= ’’checkbox” NAFIE=’’USE-DESC” I
VALUE= ’’yes’’ >Description I

<P>

Please select what field(s) to see in the report: I

<SELECT NAME= ’’DBFIELD” SIZE=3 MULTIPLE>

<DPTION VALUE= ’’url’’>URL

<OPTION VALUE= ’’title” SELECTED> Title

<OPTION VALUE= [’desc!l>Descript lon

</SELECT>

<hr>

Sho~ SQL statement on output?

<INPUT TYPE= ’’radio”

NAKE=’’SHOWSQL(’ VALUE= ’’YES”> Yes

<INPUT TYPE= ’’radio”

NAI$IE=’’SHOWSQL” VALUE=’’” CHECKED> No

<p>

<IIJPUT TYPE= ’’submit” VALUE= llSubmit Query”>

<INPUT TYPE= ’’reset’i VALUE= ’’Reset Innutll>

5.

Figure 2: A Sample HTML input Form

operations displaying the page to the user. Note that

the server can actually commurucate certain special

types of data other than HTML to the client (e,g

images, voice, video, and, lately, executable JAVA

[GOSL95] byte-code programs). The Web client

might use viewers to render such specialized data to

the user’s screen (e.g., a Postscript [AD OB90j viewer

is started if a Postscript file is returned by the server

on accessing a URL).

The user on viewing the resulting form can start

the process all over again by chckmg on another

hypertext link in the current form

2.2 HTML Input Variables

An example HTML input form is given in Figure 2

and Figure 3 shows how this form appears to a user

on a Web client. This HTML form has INPUT and

SELECT sections which are used to define input variables

for user input. The form contains six input variables

defined in the various INPUT and SELECT tags using

the NAME parameter. The variable SEARCH is used to

get text input from the user, the variables US E-URL,

USE-TITLE, and USEDESC are used to indicate the three

types of searches that can be done, the variable DBFIELD

is used to enable the user to select a list of things to

view, and finally, the variable SHOWSQL is used to set

a flag. Note that the Web user who is viewing the

form (as in Figure 3) does not need to know about the

mechanism of setting variables – the Web user merely

531

Please select what f$d(s) to see m the repoil

URL

Figure 3: A sample Web Page

points and clicks orI the various buttons, enters text in

the text box and finally submits the query by clicking

on the button named submit Query. The Web client

will then package the variable values as indicated by

the user’s screen clicks and passes these onto the Web

server. These inputs are sent to the server using a pre-

determined format. For examp]e, for the Select,iohs that

the user has made in Figure 3 the following is the value

of the input variables that the Web client sends to the

server when the user clicks on the button named Submit

Query.
SEARCH = 111! USE.URL = “yes”

USE. TITLE = “yes” USE_DESC = “ “

DBFIELD = “title DBFIELD = “des.c”

SHOWSQL = “ “

When variables are passed from a Web client to a

Web server, the case where a variable is not defined

and the case where a variable is defined to have its

value as the null string are treated identically. Finally,

the variable DBFIELD is what we call a list valued

variable, since the user can make multiple selections

on the SELECT box to which this variable is attached.

When multiple selections are made to DBFIELD [as is

the case in Figure 3), multiple values for DBFIELD will

be returned by the Web client to the Web server as

shown above.

2.3 Dynamic Generation of Web pages

In order to enable dynamic creation of Web pages,

the Web provides the common gateway interface

(CGI) protocol [CG195] that can be used by Web users

to specify an executable program in the URL. When

presented with an URL that contains the name of what

is known as a CGI application (i.e., the executable

program), a Web server that implements the CGI

I

protocol will start the CGI application as a separate

DB2Www

DetailedDataFlow

WebBrowsw WebServer DB2WWW DB2Dalabase

!$22W
UR1=/Q14,wWwtmaQohlPiW PATHJNFO=m8CDkle>fi”D,l

{%l=@uw8vatw8i%2 j OUERY_STfiNG=

[va(l=m1be18vat=va1*2, +

HTML,Iwhim WJ1 w MT
*

&
PAT!+>NKMu<dks,np,

UR1=!q,.bnldOtil<mzml#e>lrqn OUSRWRIK:
08 Opntm”mc{

[w*!”e18w2:VJLw.] l“a1wbwaos+ai”,2) execuleSQLcommands

%,POSTM,!kdSW: + — Ietn queryle$”lls +
“,fwalLw,w”a,”,4

4
HTMLK$MIom HIM1(WI lom SOLwefyresult

Figure 4: The Data Flow Using the CGI Interface

process while passing to this new process the user- input

that the server received from the Web client along with.
the URL. In addition, all of the input sent by the

Web client to the Web server (discussed in the previous

section) is formatted to fit into a string and passed to a

CGI application using the QUERY~TRING environment

variable. The data flow during the CGI protocol is

illustrated in Figure 4. In this figure, two different

scenarios are shown where an executable program called

DB2WWW is invoked twice with different inputs. Note

that, in Figure 4, any other executable program can be

invoked in place of DB2WWW.

The executable program being run as a CGI appli-

cation accesses the HTML input variables from the

WERYsTRING environment variable performs the appli-

cation logic including accessing and manipulating any

data from the database, and finally generates the out-

put. The output generated by the CGI application is

collected by the server and is used to construct the Web

page that is sent back to the Web client after the CGI

applicatio~ completes its execution.

3 Cross-Language Variable

Substitution

The key challenge in writing Web applications that

access a DBMS is to understand both the HTML

and SQL languages. In their simplest forms, basic

knowledge of SQL and HTML can be easily acquired.

However, these languages can be quite complex and

tedious to write in order to utilize their advanced

functions. Fortunately, there are existing HTML editors

532

and SQL query tools that can help to greatly reduce

the complexity of generating HTML and SQL. Since we

wanted application developers to be able to continue

using their existing HTML and SQL development tools,

we designed a simple macro language that directly

includes HTML and SQL sections while tying these two

together using a cross-language variable substitution

mechanism. The cross-language variable substitution

mechanism extends the HTML input variable support

described in Section 2.2 by providing a mechanism for

defining new variables as well as using the existing

HTML input variable support in novel ways to construct

DBMS applications.

The macro language itself has the following charac-

teristics:

1.

2.

3.

4.

It requires very little extra effort by the application

developer other than the use of HTML to create

forms and SQL for queries and updates against the

database.

It is sufficiently flexible for a variety of Web appli-

cations that do not require extensive programming

logic.

It is easily portable to multiple server platforms. In

fact, a macro written on one system works as is on

another system.

It is usable with existing Web HTML editors and

DBMS query tools

A macro contains a number of SQL and HTML

“sections” tied together via variable substitution. Each

macro file typically contains four types of sections:

1.

2.

3.

4.

One or more variable definition sections that can

be used to define and manipulate variables in the

macro.

One or more SQL command sections, that each

contain one SQL statement as well as (optional)

user-defined report formats for the SQL statement.

An HTML input section that can be used to get

input variable values from the user.

An HTML report section that will be used to

generate reports from executing SQL statements

that are constructed using input variables.

Each section is marked by a reserved keyword with

the prefix symbol % (e.g., %SQL), and can contain one

or more lines of text. The multiple lines of text

are marked enclosed between “{” and “%}”. Unless

explicitly specified below, section blocks may not be

nested. The keywords are case insensitive (may be

upper or lower case), but the variable names are case

sensitive except in certain special cases like implicit

variables that represent database column names. In the

rest of the section, we will describe the macro language

features in detail while also illustrating the use of these

features using example macros.

3.1 Variable Definition Section

A DEFINE section can be used for one of two purposes:

(a) to assign value strings to variables and (b) to

define characteristics of a variable (e.g., a variable can

be a conditional variable, list valued variable, etc.).

Variables are defined in macros using a DEFINE section

which contains one or more define-statements that have

the following syntaxz:
syntax:

%DEFINE define-statement

I

%DEFINE{

[clef ine-statementl+

%3
A “define-statement” may be one of four types, namely,

a simple assignment, a conditional assignment, a list

variable declaration, or an executable variable declara-

tion.

3.1.1 Simple Variable Assignment

A simple variable assignment in a macro is a way to

associate a variable name with a value string. Variable

names must start with a letter ([A-Z] [a-zl) or underscore

(-), followed

characters or

sensitive.
s ynt ax:

varname =

by a variable numb;; of alphanumeric

underscore(-). Variable names are case

“value-string-on-one-line”

varname = {value-string-on

multiple–lines %}
The value string assigned to a variable can contain

references to other variables that might be defined in

the macro itself or variables that will be input from

the Web client using the CGI mechanism. A variable

varname can be referenced in a value string (as well

as in other portions of a macro) using the expression

$ (varname). When a variable is evaluated to get

its value, any variables referenced in its value string

are also recursively evaluated to obtain the required

value. For example, %DEFINE varl = “$(var2) . abc”

is permitted. If one wants to get a literal string of

the form $ (varname) to be the value of the variable,

then the value should be prefixed with another $.

For example, %DEFINE a = “ $$ (b)” will result in the

variable a being evaluated to the string $(b) at run-

time. This escape mechanism can be used in extremely

useful ways to hide unnecessary information from the

user in an application program (for an illustration

2The notations used for the syntax descriptions in this

document are as follows:

●

●

●

●

●

●

UPPERCASE – keyword

lower-case-with-dashes - a description of what is to be

written

[...] - parts inside [1 appear once or not at aH

[...1* - part’ inside c1 appear zero O’ more times

[-.1+ - Partsinside[1 am= oneor moretimes
A I B – choice of one of the items A or B

of this, see the example application in Appendix A).

Circular references among variables are not allowed and

result in an error.

Simple variable assignments are typically used to set

default values for HTML input variables, and also to

define variables necessary for database access like the

name of the database, the userid, etc.

3.1.2 Conditional Variable Assignment

syntax:

(a) varname = testvar ? “value-stringl”

“value-s tring2”

(b) varname = ? “value-string”

(c) varname = testvar ? {value-stringl-on-

multiple–lines%l

: {value-string2-on-

multiple–lines%l

(d) varname = ? {value-string-on-

multiple-lines%2-
The value string assigned to a conditional variable at

run timeis dependent on whether other variables arede-

fined. In cases (a) and (c) above, $(varname) issubsti-

tuted with value-stringl iftestvar exists and isnot

null, otherwise it is substituted with value–string2.

The value strings may contain other variable references

which are dereferenced when $(varname) is processed.

In cases (b) and (d) above, $(varname) is substituted

with value-string ifthis value string does not contain

any undefined (or null) variables, otherwise $(varname)

is set to null.

3.1.3 List Variable Declaration

syntax:

%LIST “value-separator” varname
A hst variable is declared in the DEFINE section

with the list (%LIST) property. Multiple value strings

assigned to this list variable will be concatenated

together with the value-separator in between. Note

that the value-separator can in turn contain references

to other variables and hence we can have dynamically

varying delimiters (An example is to get the delimiter

from the user for AND or OR conditions for performing

searches). By default, a multiply assigned variable

returned from an HTML form in the QUERY_STRINGis a

list variable with the comma (,) as the list separator (the

default is particularly useful for SELECT and FROM

clause lists of a SQL query). The conditional and list

variables can be used together to construct portions of

the SQL clause based on HTML input variables from

user selections on an HTML form. An example is shown

below:
%def ine{

%list “ AND “ where_list

where .-list = ? “custid = $(cust_lnp)”

where_list =
~ ,,product_nme LIKE ‘$(pr-od-lnP)%’”

where_ clause = ? “WHERE $(where_list)”

%1

In the above example, it is assumed that the variables

cust-inp andprod-inpare HTML input variables that

are passed through the CGI interface. When the vari-

able where -clause gets evaluated at run-time (run-time

variable evaluation is explained in Section 4.3) the vari-

able where~ist used in the definition of where–clause

gets evaluated in turn. From the definitions, it is clear

that where _list is a list variable that is a concatena-

tion of two conditional value strings, the first contain-

ing a reference to the variable cust.inp and the second

containing a reference to the variable prod-inp. If the

CGI input values are such that cust.inp = “10100”

andprod.inp = “bikes” the variables where_list and

where-clause respectively evaluate to the following

strings.
custld = 10100 AND product _name LIKE ‘bikes%’

WHERE custid = 10100 AND product _name

LIKE ‘bikes%’
If cust-inp = ““, the first value string of the vari-

able wherelist conditionally evaluates to null and

where~ist itself evaluates to the clause custid =

iOiOO (the list variable evaluation is intelligent enough

toadddelimlters only ifthemdividual value strings are

not null). The variable where-clause therefore evalu-

ates to WHERE custid = 10100. In case both the vari-

ables cust_inp and prod-inp are either not defined

or evaluate to null, both value strings of where~ist

evaluate to null and hence where _list itself evaluates

to the null string. This in turn forces the conditional

evaluation of where _clause which also evaluates to the

null string. In other words, there will be no WHERE

clause in a SQL statement constructed using the vari-

able where-clause.

3.1.4 Executable Variable Declaration

The execute variable feature allows the invocation of

any program from the macro file and passing to it the

values of variables defined in the macro.

syntax:

varname = %EXEC “commandstring”

The “command-string” gets executed each time

$ (varname) is encountered in an HTML input or

output section, including the SQL report block (see

Section 3.2. 1). The error code, if any, resulting from

the execution is returned in varname. If there is no

error, varname will be set to NULL (equivalent to

undefined). An executable variable can be used with

a conditional variable for printing of error messages

(see the DB2WWW Application Developer’s Guide

[D2W95] for a detailed discussion).

3.2 SQL Section

syntax:

%SQL [(sql-section-name)l {

any-valid- sql-command

–on-mult iple–lines

[%SqL_REpORT{ . . . %} 1

534

[%SqL_FIESSAGE{ . . . %} 1
%3
A macro file may contain multiple SQL sections, with

each section containing exactly one SQL command to

be executed against the database, A SQL section can

be of a line format or a block format (we only discuss

block formats here) and each SQL section may option-

ally be named with a unique sql-sect ion-name. con-

tain a valid SQL command on one line. Note that the

SQL command string specified by the SQL section can

contain variables and therefore the exact SQL string

can only be determined at run-time after evaluating

the HTML input variables described in Section 2.2. A

SQL section block must contain a valid SQL command

and may contain a SQL report section (%SQL_REPORT

block) and/or a SQL message section (I!SQL-MESSAGE).

The SQL commands in the SQL sections are executed

when the HTML report section (!!HTMLJEPORT block) is

processed (HTML reports are discussed in Section 3.4).

All unnamed SQL sections are executed by an exe-

cute SQL command (xEXECs(?L directive) in the HTML

report section, and each named SQL section is exe-

cuted by a corresponding named execute SQL com-

mand (%EXEC_SqL(sql-se ction-name) directive) in the

HTML report section.

3.2.1 SQL Report Block

A SQL report block maybe written inside a SQL section

to provide custom report formatting of data resulting

from the associated SQL query. The format of the

section is defined below:
s ynt ax:

xSQL_REPORT{

report-header- (any valid html text) ,

with column name variables

resulting from query

%ROtJ{

any-valid-html-t ext, with column name

and column value variables as each

row is fetched

%3

report-f ooter- (any valid html text)

%}
The SQL query is initiated before the SQL report

block is processed, and the names of the columns are

retrieved. The report header, which is any HTML text

in the SQL report block preceding the ROW block (%ROW

section), will be printed once before the first row of

data is fetched. Special report variables for the table

are available for use inside the SQL report block for

formatting purposes:

1.

2.

3.

Ni – contains the name of the ith column retrieved

from the SQL query,

N.column-name - is set if a column named

column-name is retrieved by the query, and

NLIST – contains a string that is created by concate-

nating the names of all the columns retrieved.

The HTML text contained in the ROW block is

printed out repeatedly as each row is fetched. Just as

for the column names, special report variables for each

column value are available for use inside the row block

for formatting purposes:

1.

2.

3.

4.

ROW-NUM – contains the current row number being

processed,

vi – contains the value of the ith column retrieved

in the SQL query,

v-column-name – this contains the value of the

column named column-name if that column was

retrieved by the query, and

VLIST - contains a string that is created by concate-

nating the values of all of the columns retrieved.

The report footer, which is any HTML text following

the ROW block, will be printed out once after all

data rows have been processed. The special variable

RPT-MAXJtOWS can be used to limit the maximum

number of rows to be printed. As seen above, the special

variable ROW-NUM contains the current row number as it

is being fetched. After all rows have been fetched (%ROW

block has been processed), ROW-NUM contains the total

number of rows that result from the query, regardless of

whether all rows were printed.

3.2.2 SQL Message Section

The SQL message section (%SC/LMESSAGE) allows cus-

tomization of error or warning messages to be printed

as a result of a SQL command. For more details, re-

fer to the DB2WWW Application Developer’s Guide

[D2W95] .

3.3 HTML Input Section

syntax:

%HTML.INPUT{

any-valid-html-t ext

-on-multiple-lines

%1

The HTML input form directive contains the HTML

form asking for user inputs before generating the query.

This section is needed only when user input is required

to form the complete query.

3.4 HTML Report Section

s ynt ax:

XHTML_REPORT{

[

[

. .

any-vali.d-html-t ext-

on-multiple-lines

%EXEC_SQL(sql-section-n=e-or-variable) 1
any-valid-html-text-

on-multiple-lines

%EXEC-SQL I
any-valld-html-text-

on-multiple-lines

535

The HTML report form section contains the HTML

report form for displaying query results. The report

form contains the HTML text and execute SQL com-

mands to execute the SQL statements (%EXECsQL).

When a macro is processed in report mode, the HTML

report form is processed. All HTML text in the report

section is printed as is, with the variables deference

to their run-time values. (Note that the run-time val-

ues of user inputs from the QUERY-STRING variable over-

ride any default settings in the DEFINE sections of the

macro).

When an execute SQL command with no SQL sec-

tion name %EXEC-SQL is encountered in the HTML re-

port section, all unnamed SQL sections are executed

sequentially, in the order of appearance in the macro.

There can be at most one execute SQL command in

the HTML report form. When a named execute SQL

command (%EXECSQL(sql-sect lon-narne)) is encoun-

tered, the SQL command in the correspondingly named

SQL section (%SQL(sql-section-narne)) is executed

The SQL section name for the named execute SQL com-

mand may be stored in a variable that gets derefer-

enced at run time; e.g., %EXEc5QL($ (sqlcrnd)) is al-

lowed, where $(sqlcrnd) gets deference to a SQL sec-
tion name. This feature can be used to allow the end

user to select which SQL command to execute at run

time.

The HTML text before and after a %ExEc~QL
directive may contain hyperlinks to other HTML pages

or to another macro file. The results from executing

the SQL command in a SQL section (each SQL section

has exactly one SQL command) are printed in a default

table format if no SQL report section exists in the SQL

section. If a SQL report section exists, then it is used

for printing out the desired format using result variables

substitution as specified in the SQL report section.

4 DB2 WWW Connection

Using the macro language described in the previous

section as a basis to build Web DBMS applications,

we designed and implemented a system that processes

these macros and provides support to access a wide

variety of DBMS. The system that we built is called

DB2 WWW Connection (DB2WWW) and it can be

used to access IBM DB2 databases on a wide variety of

IBM and non-IBM platforms as well as other non-IBM

DBMS on these platforms. The overview of the system

environment that DB2WWW executes in is illustrated

in Figure 5. As shown in the figure, DB2WWW is

invoked using the CGI interface from a Web server using

the URL provided by a Web client. (The CGI interface

is described earlier in Section 2.3.) DB2WWW can be

invoked from an HTML page in one of two ways:

1. <~ HREF=

http: [{web-server}] /cgi-bin/db2wWw[. exe] /

{macro-f ilel/{crnd3 [?narne=val&. ..1>

. .

DB2 Www ~Application Development

System

Overview ~ ‘ Viih.

>

~ Visual

bnirk

Query

Tool , :

,., SQLquary

/
.<”? :

r ———. .——= — ———————— —— -De-.

Figure 5: DB2 W WW System Overview

2. <FORM METHOD= ’’post” ACTION =

http: [{web-server}] /cgi.-bin/db2www [. exe] /

{macro-f ilel/{cmd3 [?name=valk. . . I >

{web-server} is the name of web server as defined

by the W WW system administrator. This name is

optional and the default is the name of the current

web server.

{macro-file} is the name of the file storing the

macro defined by the DB2 WWW Connection

application developer. As Figure 5 illustrates,

existing HTML editors and SQL query tools can

be used by an application developer to create new

macros.

{cmd} is either input or report. If cmd is input,

the HTML input section of macro-file is processed.

If cmd is report, the HTML report section of

macro–file is processed.
[?name=val& . . .] are optional HTML input vari-

ables that may be passed to DB2 WWW Connec-

tion from the Web client through the Web server.

See Section 2.2 for a discussion of HTML input vari-

ables and see Section 2.3 for how these variables get

passed to a CGI application like DB2 WWW.

When a Web server receives an URL from a Web

client like the one described above, it will start the

db2www (or db2www. exe) program as a CGI application

and pass to it two parameters, namely the values of

the {cmd} and {macro-file} variables respectively. In

addition, the Web server will pass the HTML input

variables and their values to DB2WWW using either

the ~UERY.STRING interface (case 1. above) or the

standard input (case 2. above). (Knowledge of any finer

distinctions between these two types of interfaces is not

necessary for the purpose of our discussion here and

is therefore omitted.) Figure 6 illustrates two calls to

DB2WWW once in the input mode ({cmd} = “ input”)

and once in the report mode ({cmd} = “report”).

536

4.1 Macro Processing in Input Mode

When DB2WWW is invoked on a macro in the input

mode, it processes only the variable definition sections

(DEFINE sections) and HTML input section of the

macro (described earlier in Sections 3.1 and 3.3 respec-

tively). The HTML report section and any SQL sections

(including SQL message and SQL report sections) are

completely ignored (skipped over) by DB2WWW in the

input mode.

The variable sections are sequences of define statem-

ents and these are processed and stored in a transient

data structure. Note that the right hand side value

strings of a variable definition are not evaluated until

a variable is (recursively) dereferenced for printing in a

HTML input section.

The text in the HTML input section of the macro is

output in the same order that it occurs in the macro,

i.e., DB2WWW processes macros from beginning to

end. Any HTML text that occurs in an HTML input

section without any referenced variables is output as

is, except for the fact that output patterns which are of

the form $$ (varname) will have their leading $ stripped

and appear as $ (varname) in the output. Any variable

referenced (using the $ (varname) syntax) is substituted

using its run-time value; the values of a referenced

variable varname occurs in the output at the exact

position where the string $ (varname) occurs in the text

of the HTML input section. Since macros are processed

from the top to the bottom, only variables that were

defined in earlier DEFINE sections (or provided through

HTML input variables definitions) are recognized for

dereferencing in a HTML input section. Note that an

undefined variable is not an error, it merely evaluates

to the null string. This property is used heavily in

formatting reports. See the SQL report section of the

example application in Appendix A for an illustration

of this type of use.

4.2 Macro Processing in Report Mode

When DB2WWW is invoked in report mode, part of the

processing is similar to the processing in the input mode

(described earlier) except the HTML report section gets

processed here rather than the HTML input section. In

fact all of the things discussed in the preceding section

are applicable here too except that the output produced

in the report mode is based on the text present in the

HTML report section. In addition to this, processing a

HTML report section involves processing execute SQL

statements (%EXEC5QL directives). Each execute SQL

statement is processed by processing one or more SQL

sections and placing the output of processing the SQL

sections at the place in the output report corresponding

to the position where the XEXEC5QL directive occurs

in the text of the HTML report section in the macro.

Exactly which SQL section or sections are processed by

an execute SQL statement is determined by the type

537

of %EXECSQL directive (the three types of execute SQL

statements are described in Section 3.2). Executing a

SQL command involves the following:

1.

2.

3.

Constructing the SQL string to be executed (by

dereferencing any variables referenced in the com-

mand string) and preparing and executing the SQL

command.

Create a report for the result of the SQL command.

If no SQL report section is available for the SQL

section being processed, a default format of the

result is printed. If however, a SQL report sec-

tion exists, then appropriate system supplied vari-

ables are instantiated (Ni, N-column-name, Vi,

V-column-name, etc., described in Section 3.2.1)

and the string inside the ROW block is evaluated

once for each row of the data retrieved and its out-

put printed.

Any error or warning in executing a SQL command

is handled by evaluating and printing a warning

or error message string defined in a SQL message

section, if one exists, or by printing the DBMS error

message.

4.3 Runtime Variable Substitution

In a DB2WWW Application, variables can be defined

in one of three ways:

1, Variable assignments in a DEFINE section as de-

scribed in Section 3.1.

2. The NAME parameter of HTML form’s SELECT ,

3

and INPUT tags. These variables (described in

Section 2.2) are set by user inputs or preset by

hidden fields in the HTML forms, e.g.,

<INPUT NAME= ’’varname” TYPE= ’’hidden”

VALUE=’’value-strlng”>

System-defined variables that are automatically set

at run-time with the values from the SQL query

results (Section 3.2. 1).

The key features of the DB2WWW run-time variable

substitution mechanism are lazy evaluation of variables

(the right hand side value strings of variable definitions

are not evaluated until the latest possible moment),

unifying the name space of the HTML input variables

with the variables defined in the macros while giving

the HTML input variable values from the Web client

(i.e., the user) higher priority than the variable values

defined in the macro itself using DEFINE sections.

4.3.1 Lazy Substitution

As previously described, a variable may contain other

variables (e.g., ZDEFINE varx =“. . . $(var2) . . . “)
Variables are dereferenced (substituted with their val-

ues) when they are referenced directly or indirectly in

an HTML input or report section, where the values of

these variables need to be printed out either for the

HTML input form or the HTML report. Variables are

not dereferenced at the time of their use in XDEFINE or

%SQL sections. Consider the example below:

DB2 Www
Runtime Flow Control

Common
HTTP/HTML Gateway Dynamic SQL

Inierfece (CGI)

Figure 6: DB2 WWW Runtime

%defi.ne X = “One(Y)(Z)”

Xciefine Y = “ Two”

%FITML_INPuI’~

$(x)

%1

%define Z = “ Three”

Variable X contains references to variables Y and Z.

When theHTML input section isprocessed, Yisalready

defined, but Z is still undefined and is equivalent to

null. Thus, $(X) will be substituted with One Two and

not One Two Three. Note that there is a leading blank

character in Y and Z.

4.3.2 HTML input variable processing

When D132WWW is invoked, a number of HTML

input variables are passed to DB2WWW using the

QUERY-STRING environment variable. DB2WWW treats

every var=’’value-string” that is passed through the

CGI interface (see Figure 4 for the format of how

variables are passed) as a simple assignment statement

(Section 3.1.1) and processes it as such. Since, the

value-string of a simple assignment statement can have

references to variables, the HTML input variable value

can contain references to other variables and hence

needs to be parsed before the values can be correctly

computed. In addition to simple variables that are

passed using the CGI interface, it is also possible to

have list variables as HTML input variables (See the

end of Section 2.2 for the list variable example.) The

default delimiters for list variables is the comma (,), and

this can be overridden using the list variable declaration

(Section 3.1.3).

The lazy substitution mechanism and the HTML

input variable processing features can also be used as

abasisfor implementing useful application features like

hiding variables from the end user, scrollable cursors,

and relating multiple client-server interactions on the

web as part of the same application [D2W95].

4.4 An Example Application

The DB2 WWW Connection product has been released

since November 1995 on multiple platforms and several

applications have already been built. We provide the

macro file of one such application in Appendix A.

The resulting Web page on invoking this macro using

DB2WWW in the input mode is shown in Figure 7.

The user selections are also shown. When the user

clicks on the button named Submit Query on the form

in Figure 7, DB2WWW gets invoked in the report

mode, the HTML input variables corresponding to the

user’s selections get passed to it through the CGI

interface. DB2WWW executes by reading the macro

and the HTML input variables, and processes the

HTML report section, performing any SQL queries

necessary to generate the report. The resulting report

form is shown in Figure 8. The report contains further

data specific hyperlinks that the user can click on to

proceed further (these hyperlinks could result in further

calls to DB2WWW or be any other URL).

5 Some Practical Issues

Since DB2 WWW is a fully supported IBM product, we

had to tackle various practical issues during the devel-

opment of the system that are important in developing

applications for the Web. These issues include support

for large objects, multi-byte character support for in-

ternational languages, transaction support, and security

considerations.

DB2WWW currently supports two transaction modes

on a single client-server interaction, one mode in

which every SQL statement in a macro is a separate

transaction (auto-commit) and another mode in which

all SQL statements in a macro are executed as a

single transaction (i.e., a rollback will occur if any

SQL statement fails). For executing more complex

types of transactions, the current variable substitution

scheme of DB2WWW enables implementation of a

rudimentary scheme for linking multiple client-server

interactions. We are working on supporting more

complex transact ion modes in the future.

While DB2WWW does not provide any new security

measure, it works with the DB2 database, the Web

server, and the firewall products to provide secure data

access over the internet. For additional details on

this and other practical considerations please see the

DB2WWW Application Developer’s Guide [D2W95].

6 Related Work

There have been various efforts, mostly from universities

and governmental agencies, to develop tools for creating

Web applications that access databases. These efforts

look to automate or simplify the application develop-

ment process.

GSQL [GSQL] uses an intermediate declarative lan-

guage which is a hybrid of SQL and HTML. The GSQL

language is simpler than pure HTML and SQL, and

538

Query URL Information
Enter a search string to query URLS You do not need TOspecffy the snt!revalue for a

parm)lar field For exzmple use lb lr,stead or ibm

Use the above searcn sting In which of the followng

MUR.

M Tltls

.-l Oescrlpt19n

Note If you unselect all of the abo~e checkboxes all of the U PLs m the database A

be displayed or, OUIPU1

Please select what a,ddlt]onal fleld(s] fo see m the repmt

.-
,Description ;

Figure 7: Application Input Form

the new language blurs the line between these two lan-

guages. This language, however, is quite restrictive and

its method of variable substitution does not allow full

use of SQL and HTML capabilities. Furthermore, there

is no mechanism defined for custom layout of query re-

ports.

WDB [WDB] contains two components: a form

definition file (FDF) generator and the WDB run time

engine. The FDF generator extracts table and field

definitions from a database to build a skeleton form

definition file that contains attributes about the fields.

The WDB run time engine automatic generates the

HTML query forms, the SQL query, and the report

forms based on the FDFs. While the FDF generator

provides a quick and easy way to build simple query and

report forms to navigate the database, the FDF files

contain no information about the inputloutput form

layout. Besides, WDB has very limited limited query

and report form building capabilities.

General purpose interpreted scripting languages, such

as Perl [WALL91] and Rexx [G ERM94], can be ex-

tended to support calls to the databases. Perl or Rexx

provides the full power of a programming language but

Web application development using these languages re-

quires extensive programming and also knowledge of the

procedural interfaces.

In Oracle’s PL/SQL [PL/SQL], a new mechanism is

provided to send the HTML output from the PL/SQL

stored procedure back to the Web CGI’S output stream.

For the programmer who is already familiar with

PL/SQL, the new library routines provides a simple

way to output results into HTML pages for building

Web applications. However, building applications

URL Query Result

Select any of the followlng to go to the spectf$ed U RL

Other pages OTInferest

Figure 8: Application Report Form

require extensive programming (as in the scripting

languages described above), and the PL/SQL language

is primarily limited to Oracle databases.

7 Conclusion

We have described in this paper a new, easy to use

method of developing applications on the World Wide

Web that access data stored in commercial relational

DBMSS. The basis of our solution is a novel cross

language variable substitution scheme between HTML

and SQL. Based on this scheme, we have designed

and implemented a system called DB2WWW that has

already been released on the Web (in beta versions).

The power and ease of use of the general purpose

cross language substitution scheme described in this

paper can be attested to by the fact that applications

are already being built using DB2WWW by scores of

application developers on the Web.

The most interesting feature of the cross language

variable substitution scheme is its full support for

current (and future) versions of HTML and SQL.

This feature makes our scheme extremely attractive for

application developers well versed in SQL and HTML,

since we support these languages in their native form

in our system. The incremental work needed for

application developers to learn the macro substitution

mechanism is rather small and requires no coding at

all. The advantage of our solution stems from the

fact that the full power of HTML is available for

designing input and report forms and the full power

of SQL is available for accessing and manipulating

data in relational DBMS. In the future, we plan to

use DB2WWW’S page layout and variable substitution

approach for building Web applications for databases

539

and processing engines other than DB2

References

[ADOB90] Adobe Systems, “Postscript Language Refer-

ence Manual”, Addwon- Wesley Publishers, ISBN 0-201-

18127-4, 1990.

[CG195] “The Common Gateway Interface”, Unwersztg of

Illznozs, Urbana- Champa~gn,

http://hoohoo.ncsa. uiuc.edu/cgi/overview. html,

1995.

[D2W95] ‘(DB2 WWW Connection Home Page”, IBM

C’orporatzon, http://service. so ftware.ibm.com/

pbin-usa-demos/getobj. pl?/dernos-pdocs/

wwwdb2dnld.html, 1995.

[GERM94] German, H., ‘(0 S/2 2.1 Rexx Handbook”, Van

Nostrand Reznhold, ISBN 0-442-01734-0, 1994.

[GOSL95] Gosling, J., and McGilton, H., “The Java Lan-

guage Environment: A White Paper”, SUN Macros ystems,

http://www.javaso ft.com/whitePaper/

javawhitepaper.l .html, 1995.

[GSQL] Eng, J., “GSQL Database Gateway”, NCSA,

http://www.ncsa. uiuc.edu/SDG/People/jason/

pub/gsql/starthere. html, 1994.

[KERN88] Kernighan, B., and Ritchie, D , “The C Pro-

gramming Language”, Prentzce-Hall Publishers, ISBN O-

131-10163-3, 1988.

[LEMA95] Lemay, L., “Teach Yourself Web Publishing

with HTML in a week”, Sums Publtshzng, ISBN O-672-

30667-0, 1995.

[MOSA95] “Mosaic for X version 2.0 Fill-Out Form

Support”, Umverszty of Ilhnou, Urbana- Champaign,

http://www.ncsa. uiuc.edu/SDG/So ftware/Mosaic/

Dots/fill-out-forms/overview.html, 1995.

[PER095] Pero, C., “HTML FORMS TutoriaY, Unwerstty

of Illinoisj Urbana- Champaign

, http://robotO.ge. uiuc.edu/ carlosp/cs317/cft. html,

1995.

[PL/SQL] ‘(PL/SQL Web Extensions”, Oracle Inc.,

http://www.oracle.com, 1995

[SQL92] “Database Language SQL”, ISO-ANSI,

ISO/IEC 9075, 1992.

[STE195a] Stein, L. D., ‘(How to Set up and maintain

a World Wide Web Site: The Guide for Information

Developers”, Addzson- Wesley Publishers, ISBN 0-201-

63389-2, 1995.

[S TE195b] Stein, L. D., ‘(The World Wide Web Security

Frequently Asked Questions”, Massachusetts Institute of

Technology, http://www-genome. wi.mit.edu/

lfWVW/faqs/www-security- faq, 1995.

[S TR093] Stroustrup, B., ‘(The C++ Programming Lan-

guage”, Addison- Wesley Publishers, ISBN 0-201-12078-

x, 1993.

[WALL91] Wall, L., ‘(Programming PERL”, O ‘Redly &

Associates, ISBN 0-937-17564-1, 1991.

[WDB] Rasmussen, B., “WDB - A Web Interface to SQL

Databases”, European Southern Observatory, http://arch-

http.hq.eso.org/bfrasmus/wdb/wdb.html, 1994.

A An Example Macro File

Idef ine{

DATABASE= ’’CELDIAL”

dbtbl = “urldb”

%LIsT “ OR “ L_ II$FO

L_ II!IFO = USE_URL ?

“$(dbtbl) .UX1 LIKE ‘%$(sEARcH)x’11 : IfII

LJIiFO = USE. TITLE ?

“$(dbtbl) title LIKE ‘I$(sEARcH)%-11 : ““

L_INFO = USE_DESC ?

“$(dbtbl) description LIKE “L$(SEARCH)%’” : ““
WHERELIST = ? “WHERE $(L-IIJFO)”

XLIST “ , “ DBFIELDS

D2 = ? “
$(V2)’8

D3 = ? “
$(V3)”

x}

%SQLi
SELECT url, $ (DBFIELDS)

FROM $(dbtbl) $(WHERELIST) ORDER BY title

%SQL-REPDRT{

Select any of the . . . to the specified URL:

<lIL>

%ROW{ $(Vl) $(D2) $(D3) %}

x}

%)

%HTMLJNPUT{
<TITLE>DB2 WWW URL Query </TITLE>

u>

<Hl>Query URL Information</HI>

<P> Enter a search URLS . . . listed after the query.

<P>

<FORM HETHOD=’’post”

ACTIOIi=''/cgi-bin/db2 wwu. exe/urlquery .d2w/report''>

Search String: <INPUT F?AME=’’SEARCHII VALUE=l\ibll>

Use the above search string in which of the following:

<IIJPUT TYPE= ’’checkbox” . ..> URL

<INPUT TYPE= [[checkbox” . ..> Title

<INPUT TYPE= t’checkbox” . ..> Description

<P> Iiote: If . . . in the report :

<SELECT ?JAME=’’DBFIELDS14 SIZE=2 MULTIPLE>

<OPTION VALUE=”$$ (hidden_ a)” SELECTED> Title

<OPTIOIJ VALUE=”$$ (hidden_b) “>Description

</SELECT> <P> <HR>

Show SQL statement on output?

<INPUT TYPE= ’’radio” NAHE=’’SHOWSQL” VALUE= ’’YES”> Yes

<IEPUT TYPE= ’’radio” NAME= ’’SHOWSQL” VALUE=’’”> No

<INPUT TYPE= ’’submiti’ VALUE= ’’Submit Query i’>

<INPUT TYPE= ’’reset” VALUE= ’’Reset Input”>

</FORM> <HR>

Other pages of interest:

. . .

%3

%DEFIIIE{

hidden-a = “title”

hidden_b = “description”

%}

%HTML.REpoRT{

<TITLE>DB2 WWW URL Query Result< /TITLE>

<H1>URL Query Result </HI>

<HR>

%EXEC.SQL

<HR>

Other pages of interest:

540

