
Automatic Migration of Files into Relational Databases
Uwe Hohenstein & Andreas Ebert

Siemens AG, Corporate Technology, ZT SE 2
D-81730 München (GERMANY)

<firstname>.<lastname>@mchp.siemens.de

ABSTRACT
In order to provide database-like features for files, particularly
for searching in Web data, one solution is to migrate file data
into a relational database. Having stored the data, the capabilities
of SQL can be used for querying, provided, the data has been
given some structure. To this end, an adapter must be
implemented that converts data from files into the database.
This paper proposes a specification-based automation for this
procedure: Given some descriptive specification of file contents,
those file adapters are generated. An adequate specification
language provides powerful concepts to describe the contents of
files. In contrast to similar work, directory structures are taken
into account because they often contain useful semantics.

1. INTRODUCTION
In spite of the variety of different database technologies, there is
still a huge amount of data kept in ordinary files. For example, a
few years ago, engineering applications were forced to take files
as the performance of relational DBSs was quite bad for handling
complex structures with traversal operations. It is still today the
case that CAD tools keep their data in files. Even though object-
oriented databases may be a well-suited platform for these kinds
of applications, the files still exist due to the legacy problem
[13]. Other examples for maintaining persistent data in files are
electronic documents and gene databases. Files also get new
importance in the context of the world-wide web: WWW pages
are stored in files, and generated pages can also be seen as files.
Being spoilt by database systems, DBS-like requirements are
arising for files. In fact, files are different to databases: They do
not possess an explicit schema, and they provide only a simple
interface for reading and storing data. Particularly, the field of
semi-structured data [4] investigates solutions for this conflict.
There is a lot of work dedicated to querying the web
[6,14,18,23]. For example, [16] provides a SQL-like querying for
the web by means of Unix services for analyzing and filtering
semi-structured data. WebSQL [20] helps exploiting the structure
and topology of the document. [1] proposes an extension of OQL
[8] as a query language for the OEM model, and [3] describes
how to evaluate queries by means of query rewriting and view
materialization.

Most work in this context is relying on light-weight data models
[7,21] to infer and model the structure of file data for an ade-
quate querying. The approaches assume that data is already
arranged in such a model, and that file data is wrapped by a layer
that enables access. Transferring data manually, e.g., by
implementing parsers [2], is a complex task that requires a lot of
knowledge in compiler technology, even if tools like Yacc are
used. Moreover, a manual implementation of adapters is often
impractical because the format of sources changes frequently [5],
especially in the WWW.
Only few approaches yield an effective support to this step. [5]
suggests a semi-automatic way to generate adapters for internet
data sources. The adapters then allow users to query web
documents in a database like fashion. The approach takes
keywords as tokens of interest, and derives the nested document
structure from the source. The paper presents regular (Lex)
expressions for usual representations such as headings and
emphasizing tags. These are heuristics, whereupon a Yacc-
program is generated. However, the overall approach is tailored
very much to WWW pages. Similarly, [17] proposes wrapper
generation, too. But the paper makes more assumptions about the
data to be looked for. A powerful approach has been developed
in the TSIMMIS project [22,9]. On the basis of specified
templates that model file data in OEM, wrappers are generated.
This paper describes how file data can be migrated into a
relational database in a comfortable manner. Database-like
features are then for free since using SQL is powerful. This
avoids the problem of limited query capabilities as discussed by
[19].
In contrast to other proposals [5,9], our approach is very general
and suited for any kind of files. The concepts are particularly
adequate for WWW sources, too. Moreover, we are able to
incorporate the directory structure. This is important since files
and directories carry semantics being also useful for queries.
Furthermore, our approach takes into account unparsing the data,
i.e., writing data back into files after modifications. These
important points are mostly neglected by others.
The remainder of this paper is structured as follows. Section 2 is
concerned with the generative approach. We are presenting the
basics of a language ODLFile for specifying file contents. Any
such specification is an intuitive input to a generator that
produces relational tables and a file adapter. This adapter
converts files into tables in a structured manner, and stores data
back into files. This releases one from the tremendous task of
implementing Yacc programs as it is necessary in [2]: We
generate those programs. Several files in any directories can be
handled.
Section 3 presents several relevant examples that demonstrate
the expressiveness of the specification language. Particularly,
some aspects related to handling WWW sources are discussed.

Permission to make digital or hard copies of all or part of this work for 
person or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that  
copies bear this notice and the full citation on the first page. To copy  
otherwise, to republish, to post on servers or to redistribute to lists,  
requires prior specific permission and/or a fee. 
WIDM 99 Kansas City Mo USA 
Copyright ACM 1999 1-58113-221-2/99/11…$5.00 

 

17



In Section 4, we outline some future work we are planning to do.

2. GENERATIVE APPROACH
2.1 Principle
The generative principle for the handling of files relies on a
generator producing a file adapter. The generator requires input
by means of a specification  in a language ODLFile. A
specification defines a “schema” for file contents in a certain
sense. The syntax of ODLFile is a mixture of the ODMG ODL [8]
and an enhancement of Yacc. ODL is used to describe the
schema of the data file in an object-oriented way. File contents
are modeled independently of the physical file structure. The
Yacc-part then defines a grammar. The grammar precisely
describes the contents of files. Using a Yacc-style eases the later
generation of a parser by means of this compiler-compiler.
Parsing a file, the collected information has to be organized
according to the ODL schema. Hence a third part of ODLFile

relates the grammar to the schema.
The generator uses the grammar of the specification and
produces a Yacc program that is able to parse data files. Using
the ODL schema and the assignments, the Yacc-program is
enriched with semantic actions that build objects according to the
ODL schema. These are the objects to be stored in a relational
database. Tables are installed according to some standard
mechanism that map the ODLFile schema onto tables. Afterwards
complex ODL objects are transferred into the relational database.
The unparser within the adapter is responsible for writing
modified data back to files. As there is no tool support, the
generator for unparsers must be implemented from scratch.
The data collected by the generator is stored in a meta-database.
The meta-data consists of any information found in an ODLFile

specification, i.e., the ODL schema and the structure of the
grammar. Producing the Yacc program by means of the meta-
database is easier as it does not need to be done during parsing
an ODLFile specification. Moreover, the metadata is used for
producing the unparser and the relational tables.

2.2 Example
Figure 1 describes a simple migration scenario with a data file

containing departments and employees: Lines starting with 100
denote departments, those starting with 200 mark employees. The
sequence of the records within the file is relevant: All employees
following a department record work for that department.
Furthermore, the first employee record is assumed to be the head
of the department.
The first part of an ODLFile specification defines an ODL-schema
for the data. The syntax is based on ODMG ODL [8]. In Figure
1, the data is modeled as object types Department and Employee.
ODLFile supports only a subset of ODMG ODL; subtypes and
explicit relationships between object types are omitted. Although
useful from the point of modeling file data, we cannot really
benefit from subtypes and relationships, because we have to map
them afterwards onto flat tables. Moreover, the representations of
subtypes and relationships in files are much more manifold than
those discussed in the field of semantic enrichment of relational
databases [10,23]. Such an enrichment of files should better be
done by a successive semantic enrichment step, e.g., using our
specification-based approach [10] that perfectly fits. Anyway,
some concepts are necessary because we will not be able to
rebuild semantics in the relational database otherwise. This is
why complex objects can be modeled by means of multi-valued
attributes: staff in interface Department models a member
relationship. We need the information for establishing correct
foreign keys in relational tables (cf. staffOf in table employee).
Those nested structures occur quite often in files [5], e.g., the
nesting of headings in WWW pages or \(sub)section{...} in Tex
files.
We also enhance ODL in order to be able to describe file
contents as precisely as possible. We add an order by clause
specifying that an object type must be ordered: Departments
occur in the file with ascending id's. It is essential to express this,
because otherwise the adapter has no chance to write back the
file correctly in this order!
The second part of the specification consists of a context-free
grammar for the data file in an extended Yacc style. At first,
file(personnel,FILE) relates the file ‘personnel’ to the nonterminal
FILE; FILE is the starting symbol for analyzing the file.
We extended Yacc in order to ease the writing of specifications.

    File ‘personnel’: 100,1,Research 
200,11,Johnson,1000 
200,12,Miller,2000
200,13,Stone,3000
100,2,Production
200,21,Taylor,5000
200,22,Edward,4000

ODL schema + Assignments: Grammar:
interface Department  from DEPT[ DNUM<10 (short,ET_ASCII) ] file(personnel,FILE);    // start symbol
   (key  id)  FILE:     STAFF[0-];
    order by id asc; STAFF: DEPT   MGR   EMP[1-];
{ attribute short  id         = DNUM (ET_ASCII); DEPT:   "100,"   DNUM   ","   DNAME   _EOL;
   attribute String name  = DNAME;   MGR :  EMP;
   attribute Employee head           = MGR;  EMP:    "200,"   ENUM   ","   ENAME   ","   SALARY   _EOL;
   attribute Set<Employee> staff   = EMP[1-];        }; DNUM:      _NUMBER;
interface Employee from EMP DNAME:    _ID;
{  attribute short  id        = ENUM; ENUM:      _NUMBER;
   attribute String name  = ENAME;  ENAME:    _ID;
   attribute String salary = SALARY;   }; SALARY:   _NUMBER;

Figure 1: ODLFile Specification

department    id   name         head
 1   Research     11
 2   Production   21

employee id     name        salary   staffOf
11 Johnson 1000 1 
12 Miller 2000 1
21 Stone 3000 1
22 Taylor 5000 2
23 Edward 4000 2

18



The specification language offers the possibility to use repetition
groups <nonterminal>[n-m] known from SGML. Those repetitions
clearly improve the readability and the maintainability of a
specification. FILE should here contain one or more bulks ([0-]) of
STAFF information. Each STAFF has one DEPT record, one MGR
record, and several EMP records. DEPT records possess the form
100, comma, DNAME, comma, DNUM, and end-of-line. The
structure of EMP and MGR records is similar.
Terminal symbols denote the characters of the data file. They can
be defined either by embedding the characters in quotation marks
such as "100", or by using predefined nonterminals. For example,
the predefined symbol _NUMBER stands for an optionally signed
integer number. Similarly, _ID represents a sequence of letters,
_DIGIT any digit, _BYTE any byte character, and so on. The
predefined symbols ensure shorter specifications. Particularly,
files with fixed-sized records can effectively be described by
using _NUMBER[6] (exactly 6 digits) and so on.
The grammar describes the structure of data files. A
corresponding parser can then collect the information from files.
Assignment rules now relate the parsed information to objects in
the ODL schema. In fact, those rules provide some abstract
information that allows our generator to enrich a Yacc-parser
with semantic actions building objects from parsed file records.
Assignment rules extend the ODL schema by means of a from
clause and attribute equations. These parts are put in italics in
Figure 1. Department from DEPT determines that the nonterminal
DEPT characterizes Department objects. Any time the rule for
DEPT is passed by the parser, a new Department object is created.
This defines the boundaries of objects and fixes an object as
“current”: Equations then describe how to fill attributes of the
current object.
Any grammar rule gives a nonterminal a certain value that is
used for filling attributes. The value of DNUM is exactly the
number that is parsed, e.g., "1" after analyzing the first
department record. This value is exported to set the attribute id of
Department by means of id = DNUM. The value of MGR is the one
of EMP which is composed as follows: "200," is a terminal symbol
which naturally has the value "200,''. ENUM, ENAME, and SALARY
are other nonterminals which are later assigned the values "21'',
"Taylor" and "5000'' after analyzing a manager record. Hence,
MGR has the value "200,21,Taylor,5000''. Equations describe that
head receives the value of MGR. Similarly, the value of EMP[1-] is
computed by concatenating the EMP values. staff = EMP[1-]
specifies how to establish the attribute staff for the current
department. The concept is very powerful, as we can express
nested structures in any depth.
The approach integrates some other important features such as
encoding and filtering. It is a difference, whether an integer
occurs in a binary format or as an ASCII-number in a file. Hence,
it is important to specify how the data in the file is encoded.
ODLFile offers the possibility to distinguish between different
encodings. For example, ET_ASCII can be used for ASCII-text,
while ET_IEEE is used for IEEE binary encoding. id = DNUM
(ET_ASCII) then specifies that the parsed DNUM-value should be
ASCII-decoded before assigning to the id attribute of the current
Department-object. ASCII-decoding is the default.
Filtering is important as there are some file formats that only
mark records in a file as deleted, but do not really remove them.
Consequently, it is no good to take those records for objects. To
this end, filters can be specified in ODLFile for the object types
constructed from a data file. [ DNUM<10 (short,ET_ASCII) ]

specifies that Department records are only exported if the value of
DNUM is lower than 10. The condition requires a data type, since
the nonterminal DNUM might not be used as attribute value.
Using an ODLFile specification, a relational database can be
installed easily. The tables are generated according to some
standard mechanism to map the ODLFile schema onto tables. The
handling of multi-valued attributes is straightforward: For any
such attribute, e.g., staff, a table is created that takes the values
entry by entry. An artificial foreign key staffOf is introduced for
employee in order to refer to the “base” table department. Please
note that the generator has to know the key of the base tables.
This is why a key clause is necessary for the department interface.
The objects created by the analyzer are mapped to tuples accord-
ing to the table structures. Running our migration procedure, the
file data will be stored in tables department and employee.

3. SPECIFICATION LANGUAGE
In order to demonstrate the expressive power of ODLFile, we
present some examples that show the handling of specific points.

3.1 Table Structures in Files
Table structures in files can be handled quite easily. The most
common format is the “dbase” format, which stores objects
horizontally value by value:

emp id name salary
11 Johnson 1000
12 Miller 2000
13 Stone 3000

The following specification produces an object type Emp.
interface Emp from TAB1    file(f,TAB1);
{  attribute int id       = ATTR1; TAB1: "emp" _BLANK _ID BLANK
   attribute int name = ATTR2;          _ _ID_BLANK _ID EMP[1-];
   attribute int salary = ATTR3; EMP:  ATTR1 _BLANK ATTR2
};           _BLANK ATTR3 _EOL;

ATTR1:  _NUMBER; 
 ATTR2:  _STRING;     ...
The grammar asks for a token "emp" and introduces a sequence of
_BLANK _ID just to skip the headline; the _IDs are not used as
information. Afterwards the structure of the table is described.
Please note this is a style similar to defining tables in HTML.
There, a description of table looks as follows in a HTML source.
<TABLE...> <TR ALIGN=left> 
   <TH> id </TH> <TH> name </TH> <TH> salary </TH> </TR>
   <TR ALIGN=left> <TD> 11 </TD> <TD> Johnson </TD> 
   <TD> 1000 </TD> </TR>  ... 
</TABLE>
A specification must handle bracketing such as <TD>...</TD> etc.
as terminals in addition. This is precisely expressible in any
depth in a context-free grammar.
A file may contain several tables in this manner. A corresponding
specification then starts with FILE: TAB1 & TAB2 & TAB3. ODLFile

provides an operator ‘&’ in order to express in a comfortable
manner that tables TAB1, TAB2 and TAB3 may occur in any order
within the data file.
Just to demonstrate the power of our approach, we show another
representation of tables that stores attribute values vertically: id
11 12 13 ... . An entry is built from one column instead of a row.
This table form sometimes occurs in HTML files, if the number
of entries is fixed, but the number of rows is subject to changes.
It has advantages as the record structure can grow vertically.

19



The following specification is a little tricky because the creation
of Emp objects is bound to ATTR1: Any time ATTR1 is passed, a
new Emp object has to be created.
interface Emp from ATTR1  FILE: "emp" VALUES1
{  attribute integer id       = ATTR1;           _EOL  VALUES2
   attribute integer name = ATTR2;           _EOL  VALUES3; 
   attribute integer salary = ATTR3; VALUES1:  _ID _BLANK
};                     ATTR1[1-]; 
 ...

3.2 Hyperlinks
Handling hyperlinks, which occur as <A HREF=http:address> in
WWW pages, requires some specific concepts. We assume a file
with several entries of the form dept emps eol where any emps
(underlined) is a link to another file containing the names of
employees in this department. In principle, we could describe
such a hyperlink by means of "<A HREF=" LINK "> ..." in a
grammar. A nonterminal LINK defines the structure of the file
referred to. But the parser will not be able to analyze LINK,
because it is part of a different file. We introduce a predefined
keyword _REF to let the parser take LINK as a string, the
filename.
interface Dept from DEPT   interface Emp from EMP
{   attribute String name = DNAME; { attribute name = EMP; };
    attribute Set<Emp> staff = LINK;    };
FILE:   DEPT [1-]; 
DEPT: DNAME   _BLANK   "<A HREF=http:" 
           _REF   LINK   ">"   NAME   "</A>"; 
DNAME: _ID;
LINK:      EMP[1-];
EMP:     _ID; 
NAME:   _ID;  // name of the link in browser
The parser ignores the nonterminal LINK (due to _REF LINK) and
collects the http address of the link instead. NAME obtains the
name of the link. Later on, LINK is used as a starting symbol for
the addressed file. Then the rule LINK: EMP[1-] is applied.

3.3 Handling File Systems
Let us now take into account several files organized in a directory
hierarchy. The directory structure may contribute to the modeling
of file contents. As far as we perceived, there has been no
solution in the literature considering this kind of semantics.
We start with isolated files, each one containing some objects oi
of one type Oi. Hence, a file fi represents one object type Oi.
Files: f1: o1 ... o1 file(f1,FILE1); FILE1: OBJ1[1-]; ...

f2: o2 ... o2 file(f2,FILE2); FILE2: OBJ2[1-]; ...
The principle of the specification consists of giving each file fi a
starting symbol of its own. The file clause determines which
grammar (start symbol) is used to analyze the file. OBJi rules
represent the object structure.
It might happen that the objects of one type are spread over
several files, e.g., each file in a certain directory /dir is one
(complex) object of that type. Hence the directory denotes an
object type.
Files:  f1: o1o2o3...o3o2o3...o3... file(/dir/*,DATA1);

  f2: o1o2o3...o3o2o3...o3... DATA1: OBJ1 DATA2[1-];
  f3: o1o2o3...o3o2o3...o3... DATA2: OBJ2 OBJ3[1-];

OBJ3: ...
Since the objects possess the same structure, one grammar can be
used to define the structure of several files. file determines the
files to be analyzed by the start symbol, e.g., file(dir/*,DATA1) takes

all the files in /dir into account. They are all parsed by the same
grammar starting with nonterminal DATA1. The grammar extracts
exactly one complex object of type OBJ1, including subobjects of
types OBJ2 and OBJ3. The files can be scoped by usual Unix
wildcards ‘*’ ( any sequence of symbols) and ‘?’ (an arbitrary
symbol) to denote several files, e.g., file(/dir?/*/f*, DATA1) qualifies
all the files starting with an f in any directory under /dir1, /dir2, ...,
/dira, /dirb and so on. Several of those file specifications are
possible within file.
If we want to use the filename as an attribute value for the object
type O1, we can add <attr> = _NAME; a predefined function
_NAME computes the filename in assignments.
A directory can represent an object type. For example, each file
fij in directory diri represents a (complex) object of type Oi below:
Files: dir1 = { f11,...,f1m } file(/dir1/*, DATA1); DATA1: OBJ1[1-];...

dir2 = { f21,...,f2n } file(/dir2/*, DATA2); DATA2: OBJ2[1-];...
All the files in directory diri are parsed by the same grammar
with start symbol DATAi. DATAi defines the structure of type Oi.

3.4 Directories Representing Relationships
We found some file systems where a directory represents some
kind of relationship between the objects contained in its files. Let
us assume directories that contain three files, f1, f2 and f3, each
one related to a type Oi. Those directories can represent a ternary
relationship between the objects in files. If a file contains several
objects, then the relationships consists of the “cross product”:
Any object in f1 is in relationship with any object in f2 and in f3.
dir1 = { f1, f2, f3 } f1: {2,3} ;   f2 : {1,2}    ;   f3 : {1,2,4}
dir2 = { f1, f2, f3 } f1: {3,4} ;   f2 : {3,4,5} ;   f3 : {3}
The following specification again makes use of predefined
functions for accessing file and directory names. A function _DIR
determines the directory of the current file, _NAME yields the
name of a file or directory, and _PATH gives out the complete
path as a string. They can be used for assignments like
nonterminals. This enables us to capture this additional source of
semantics.
interface O1 from DATA1 file(dir*/f1, DATA1);
{   attribute attr1 = ...; DATA1: OBJ1[1-];
    attribute  relship = _DIR._NAME;  }; ...

interface O2 from DATA2 file(dir*/f2, DATA2);
{   attribute attr1 = ...; DATA2: OBJ2[1-];
    attribute  relship = _DIR._NAME;  }; ...

interface O3 from DATA3 file(dir*/f3, DATA3)
{   attribute attr1 = ...; ... DATA3: OBJ3[1-];
    attribute  relship = _DIR._NAME;  }; ...
Please note the relationship is not directly expressed in the ODL
schema. This is because it is difficult to describe the association
between a relationship and its various directory representations.
Nevertheless, we use the directory name as an attribute relship.

relship occurs in the tables. Now it is possible to join the tables
via relship to compute the relationship in a SQL-like manner.
This principle is also applicable for directory hierarchies, since it
is possible to navigate along the hierarchy by means of _DIR._DIR
....

O1   id  relship O2   id   relship O3   id   relship
        2     dir1          1  dir1         2       dir1
        3     dir1          2  dir1         3       dir1
        3     dir2                   3  dir2         3       dir2
        4     dir2                   4  dir1         4       dir2

20



4. CONCLUSIONS
This paper presented a generative, specification-based approach
to migrate data from several files into a relational database. A
generator automatically installs adequate tables and fills them
with file data; it also stores modified data back into files.
The approach is embedded in a federation framework FIHD
(Flexible Integration of Heterogeneous Data sources) [11].
Similar to TSIMMIS [22] and Information Manifold [15], FIHD
has the goal to provide an easy access to heterogeneous data
without knowing the exact source and type of source. A generat-
ive principle produces ODMG adapters that homogenize object-
oriented and relational databases. Those adapters can be plugged
in a federation framework that gives a transparent ODMG
access. Generators have been built to produce adapters for
commercial relational and object-oriented DBSs. Files must be
transferred to a relational database to be plugged in a federation.
In the context of this paper, semantic enrichment [10], one of the
building blocks of FIHD, is worth mentioning: The semantics
inherent to relational tables, is made explicit by using object-
oriented modeling concepts. A real object-oriented view,
including subtyping and relationships, is achieved. A generator
produces an ODMG2.0 conforming manipulation and querying
interface. This gives users the opportunity to see relational data
in an object-oriented way, to manipulate relational data in terms
of C++ objects and thus hiding the relational structure. More-
over, data can be queried in a more powerful way by means of
the object-oriented extension OQL of SQL. Using this in addition
to file migration, the file contents are manageable by an ODMG
access interface [8]. This opens the door to migrate file data in an
object-oriented database by means of our federation approach.
Future work will be dedicated to integrating file systems into the
federation framework directly, avoiding the detour via relational
databases. It then makes sense to incorporate the ideas of
semantic enrichment into generating file adapters. We also think
of other types of front-end interfaces for the federation frame-
work. Owing to our FIHD architecture, it is easily possible to
generate any type of interface instead of ODMG2.0, e.g.,
ActiveX components, or HTML pages to visualize information
obtained from the federation. Finally, we feel the need for a com-
fortable graphical support for defining specifications similar to
[10].

5. REFERENCES
[1] S. Abiteboul: Querying Semi-Structured Data. In [12]
[2] S. Abiteboul, S. Cluet, T. Milo: Querying and

Updating the File. In Proc. Conf. on Very Large
Databases (VLDB) 1993

[3] S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos,
Y. Zhuge: Views for Semistructured Data. In: [4]

[4] ACM SIGMOD: Workshop on Management of Semi-
structured Data. Tucson (Arizona) 1997. Superseded
by ACM SIGMOD Record 26(4), Dec. 1997

[5] N. Ashish, C. Knoblock: Wrapper Generation for
Semi-structured Internet Sources. In [4]

[6] P. Buneman, S. Davidson, G. Hillebrand, D. Suciu: A
Query Language and Optimisation Techniques for
Unstructured Data. ACM SIGMOD Conf. on
Management of Data, Montreal 1996

[7] P. Buneman, S. Davidson, M. Fernandez, D. Suciu:
Adding Structure to Unstructured Data. In [12]

[8] R. Cattell (ed.): The Object Database Standard:
ODMG2.0. 2nd edition, Morgan-Kaufmann
Publishers, San Mateo (CA) 1997

[9] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, A.
Crespo: Extracting Semistructured Information from
the Web. In [4]

[10] U. Hohenstein, C. Körner: A Graphical Tool for
Specifying Semantic Enrichment of Relational Data-
bases. In: 6th IFIP  Conf. on Data Semantics (DS-6)
“Database Applications Semantics”, Atlanta 1995

[11] U. Hohenstein, V. Pleßer: A Generative Approach to
Database Federation. 16th Int. Conf. on Conceptual
Modeling - ER'97, Los Angeles 1997, Springer LNCS
1331

[12] ICDT’97: Int. Conf. on Database Theory, Delphi
1997

[13] IEEE’95: Legacy Systems. Special Issue of IEEE
Software 12(1), 1995

[14] V. Kashyap, M. Rusinkiewicz: Modeling and Query-
ing Textual Data using E-R models and SQL. In: [4]

[15] T. Kirk, A. Levy, Y. Sagiv, D. Srivastava: The
Information Manifold. In Proc. of the AAAI Spring
Symp. Series, March 1995

[16] D. Konopnicki, O. Shmueli: W3QS: A Query System
for the World Wide Web. In 21st Int. Conf. on Very
Large Databases (VLDB95), Zurich 1995

[17] N. Kushmerick, D. Weld, R. Doorenbos: Wrapper
Induction for Information Extraction. In Int. Joint
Conf. on Artificial Intelligence, Nagoya (Japan) 1997

[18] L. Lakshamanan, F. Sadri, I. Subramanian: A
Declarative Language for Querying and Restructuring
the Web. 6th Int. Workshop on Research Issues in
Data Engineering (RIDE96), New Orleans 1996

[19] A. Levy, A. Rajaraman, J. Ordille: Heterogeneous
Information Sources Using Source Descriptions. In
22nd Int. Conf. on Very Large Databases, 1996

[20] A. Mendelzon, G. Mihaila, T. Milo: Querying the
World Wide Web. In Symp. on Parallel and
Distributed Information Systems, Miami 1996

[21] S. Nestorov, S. Abiteboul, R. Motwani: Inferring
Structure in Semistructured Data. In: [4]

[22] Y. Papakonstantinou, H. Garcia-Molina, J. Widom:
Object Exchange Across Heterogeneous Information
Sources. IEEE Conf. on Data Engineering 1995

[23] W. Premerlani, M. Blaha: An Approach for Reverse
Engineering of Relational DBs. CACM 37(5), 1994

[24] Y.-H. Wu, Y.-H. Chen, A.L.P. Chen: Querying and
Browsing the Resources in Internet. In Proc. of Int.
Conf. on Distributed Systems, Software Engineering,
and Database Systems, 1996

21


