Objectives

In this chapter, you will learn:

- About data modeling and why data models are important
- About the basic data-modeling building blocks
- What business rules are and how they influence database design
- How the major data models evolved
Objectives (cont’d.)

- About emerging alternative data models and the need they fulfill
- How data models can be classified by their level of abstraction

Introduction

- Designers, programmers, and end users see data in different ways
- Different views of same data lead to designs that do not reflect organization’s operation
- Data modeling reduces complexities of database design
- Various degrees of data abstraction help reconcile varying views of same data
Data Modeling and Data Models

• Data models
 – Relatively simple representations of complex real-world data structures
 • Often graphical
• Model: an abstraction of a real-world object or event
 – Useful in understanding complexities of the real-world environment
• Data modeling is iterative and progressive

The Importance of Data Models

• Facilitate interaction among the designer, the applications programmer, and the end user
• End users have different views and needs for data
• Data model organizes data for various users
• Data model is an abstraction
 – Cannot draw required data out of the data model
Data Model Basic Building Blocks

- **Entity**: anything about which data are to be collected and stored
- **Attribute**: a characteristic of an entity
- **Relationship**: describes an association among entities
 - One-to-many (1:M) relationship
 - Many-to-many (M:N or M:M) relationship
 - One-to-one (1:1) relationship
- **Constraint**: a restriction placed on the data

Business Rules

- **Descriptions of policies, procedures, or principles within a specific organization**
 - Apply to any organization that stores and uses data to generate information
- **Description of operations to create/enforce actions within an organization’s environment**
 - Must be in writing and kept up to date
 - Must be easy to understand and widely disseminated
- **Describe characteristics of data as viewed by the company**
Discovering Business Rules

• Sources of business rules:
 – Company managers
 – Policy makers
 – Department managers
 – Written documentation
 • Procedures
 • Standards
 • Operations manuals
 – Direct interviews with end users

Discovering Business Rules (cont’d.)

• Standardize company’s view of data
• Communications tool between users and designers
• Allow designer to understand the nature, role, and scope of data
• Allow designer to understand business processes
• Allow designer to develop appropriate relationship participation rules and constraints
Translating Business Rules into Data Model Components

• Nouns translate into entities
• Verbs translate into relationships among entities
• Relationships are bidirectional
• Two questions to identify the relationship type:
 – How many instances of B are related to one instance of A?
 – How many instances of A are related to one instance of B?

Naming Conventions

• Naming occurs during translation of business rules to data model components
• Names should make the object unique and distinguishable from other objects
• Names should also be descriptive of objects in the environment and be familiar to users
• Proper naming:
 – Facilitates communication between parties
 – Promotes self-documentation
Hierarchical and Network Models

- The hierarchical model
 - Developed in the 1960s to manage large amounts of data for manufacturing projects
 - Basic logical structure is represented by an upside-down “tree”
 - Structure contains levels or segments
Hierarchical and Network Models (cont’d.)

• Network model
 – Created to represent complex data relationships more effectively than the hierarchical model
 – Improves database performance
 – Imposes a database standard
 – Resembles hierarchical model
 • Record may have more than one parent

– Collection of records in 1:M relationships
– Set composed of two record types:
 • Owner
 • Member

• Network model concepts still used today:
 – Schema
 • Conceptual organization of entire database as viewed by the database administrator
 – Subschema
 • Database portion “seen” by the application programs
Hierarchical and Network Models (cont’d.)

– Data management language (DML)
 • Defines the environment in which data can be managed

– Data definition language (DDL)
 • Enables the administrator to define the schema components

The Relational Model

• Developed by E.F. Codd (IBM) in 1970
• Table (relations)
 – Matrix consisting of row/column intersections
 – Each row in a relation is called a tuple
• Relational models were considered impractical in 1970
• Model was conceptually simple at expense of computer overhead
The Relational Model (cont’d.)

- Relational data management system (RDBMS)
 - Performs same functions provided by hierarchical model
 - Hides complexity from the user
- Relational diagram
 - Representation of entities, attributes, and relationships
- Relational table stores collection of related entities
The Relational Model (cont’d.)

- SQL-based relational database application involves three parts:
 - End-user interface
 - Allows end user to interact with the data
 - Set of tables stored in the database
 - Each table is independent from another
 - Rows in different tables are related based on common values in common attributes
 - SQL “engine”
 - Executes all queries
The Entity Relationship Model

• Widely accepted standard for data modeling
• Introduced by Chen in 1976
• Graphical representation of entities and their relationships in a database structure
• Entity relationship diagram (ERD)
 – Uses graphic representations to model database components
 – Entity is mapped to a relational table

The Entity Relationship Model (cont’d.)

• Entity instance (or occurrence) is row in table
• Entity set is collection of like entities
• Connectivity labels types of relationships
• Relationships are expressed using Chen notation
 – Relationships are represented by a diamond
 – Relationship name is written inside the diamond
• Crow’s Foot notation used as design standard in this book
The Object-Oriented (OO) Model

- Data and relationships are contained in a single structure known as an object
- OODM (object-oriented data model) is the basis for OODBMS
 - Semantic data model
- An object:
 - Contains operations
 - Are self-contained: a basic building-block for autonomous structures
 - Is an abstraction of a real-world entity
The Object-Oriented (OO) Model (cont’d.)

- Attributes describe the properties of an object
- Objects that share similar characteristics are grouped in classes
- Classes are organized in a class hierarchy
- Inheritance: object inherits methods and attributes of parent class
- UML based on OO concepts that describe diagrams and symbols
 - Used to graphically model a system

![Figure 3.4: A comparison of OO, UML, and ER models](image-url)
Object/Relational and XML

• Extended relational data model (ERDM)
 – Semantic data model developed in response to increasing complexity of applications
 – Includes many of OO model’s best features
 – Often described as an object/relational database management system (O/RDBMS)
 – Primarily geared to business applications

Object/Relational and XML (cont’d.)

• The Internet revolution created the potential to exchange critical business information
• In this environment, Extensible Markup Language (XML) emerged as the de facto standard
• Current databases support XML
 – XML: the standard protocol for data exchange among systems and Internet services
Emerging Data Models: Big Data and NoSQL

• Big Data
 – Find new and better ways to manage large amounts of Web-generated data and derive business insight from it
 – Simultaneously provides high performance and scalability at a reasonable cost
 – Relational approach does not always match the needs of organizations with Big Data challenges

Emerging Data Models: Big Data and NoSQL (cont’d.)

• NoSQL databases
 – Not based on the relational model, hence the name NoSQL
 – Supports distributed database architectures
 – Provides high scalability, high availability, and fault tolerance
 – Supports very large amounts of sparse data
 – Geared toward performance rather than transaction consistency
Emerging Data Models: Big Data and NoSQL (cont’d.)

• Key-value data model
 – Two data elements: key and value
 • Every key has a corresponding value or set of values
• Sparse data
 – Number of attributes is very large
 – Number of actual data instances is low
• Eventual consistency
 – Updates will propagate through system; eventually all data copies will be consistent
Data Models: A Summary

• Common characteristics:
 – Conceptual simplicity with semantic completeness
 – Represent the real world as closely as possible
 – Real-world transformations must comply with consistency and integrity characteristics
• Each new data model capitalized on the shortcomings of previous models
• Some models better suited for some tasks
Degrees of Data Abstraction

• Database designer starts with abstracted view, then adds details
• ANSI Standards Planning and Requirements Committee (SPARC)
 – Defined a framework for data modeling based on degrees of data abstraction (1970s):
 • External
 • Conceptual
 • Internal

The External Model

• End users’ view of the data environment
• ER diagrams represent external views
• External schema: specific representation of an external view
 – Entities
 – Relationships
 – Processes
 – Constraints
The External Model (cont’d.)

- Easy to identify specific data required to support each business unit’s operations
- Facilitates designer’s job by providing feedback about the model’s adequacy
- Ensures security constraints in database design
- Simplifies application program development
The Conceptual Model

- Represents global view of the entire database
- All external views integrated into single global view: conceptual schema
- ER model most widely used
- ERD graphically represents the conceptual schema
The Conceptual Model (cont’d.)

- Provides a relatively easily understood macro level view of data environment
- Independent of both software and hardware
 - Does not depend on the DBMS software used to implement the model
 - Does not depend on the hardware used in the implementation of the model
 - Changes in hardware or software do not affect database design at the conceptual level

The Internal Model

- Representation of the database as “seen” by the DBMS
 - Maps the conceptual model to the DBMS
- Internal schema depicts a specific representation of an internal model
- Depends on specific database software
 - Change in DBMS software requires internal model be changed
- Logical independence: change internal model without affecting conceptual model
The Physical Model

- Operates at lowest level of abstraction
 - Describes the way data are saved on storage media such as disks or tapes
- Requires the definition of physical storage and data access methods
- Relational model aimed at logical level
 - Does not require physical-level details
- Physical independence: changes in physical model do not affect internal model
Summary

• A data model is an abstraction of a complex real-world data environment
• Basic data modeling components:
 – Entities
 – Attributes
 – Relationships
 – Constraints
• Business rules identify and define basic modeling components
Summary (cont’d.)

• Hierarchical model
 – Set of one-to-many (1:M) relationships between a parent and its children segments
• Network data model
 – Uses sets to represent 1:M relationships between record types
• Relational model
 – Current database implementation standard
 – ER model is a tool for data modeling
 • Complements relational model

Summary (cont’d.)

• Object-oriented data model: object is basic modeling structure
• Relational model adopted object-oriented extensions: extended relational data model (ERDM)
• OO data models depicted using UML
• Data-modeling requirements are a function of different data views and abstraction levels
 – Three abstraction levels: external, conceptual, and internal