
1

Chapter 20

Transaction Management

© Pearson Education Limited 1995, 2005

2

Chapter 20 - Objectives

 Function and importance of transactions.

 Properties of transactions.

 Concurrency Control

– Deadlock and how it can be resolved.

– Granularity of locking.

© Pearson Education Limited 1995, 2005



3

Chapter 20 - Objectives

 Recovery Control

– Some causes of database failure.

– Purpose of transaction log file.

– Purpose of checkpointing.

– How to recover following database failure.

© Pearson Education Limited 1995, 2005

4

Transaction Support

Transaction

Action, or series of actions, carried out by user or
application, which reads or updates contents of
database.

 Logical unit of work on the database.

 Application program is series of transactions with non-
database processing in between.

 Transforms database from one consistent state to
another, although consistency may be violated during
transaction.

© Pearson Education Limited 1995, 2005



5

Example Transaction

© Pearson Education Limited 1995, 2005

6

Transaction Support

 Can have one of two outcomes:
– Success - transaction commits and database reaches a

new consistent state.

– Failure - transaction aborts, and database must be
restored to consistent state before it started.

– Such a transaction is rolled back or undone.

 Committed transaction cannot be aborted.

 Aborted transaction that is rolled back can be
restarted later.

© Pearson Education Limited 1995, 2005



7

State Transition Diagram for Transaction

© Pearson Education Limited 1995, 2005

8

Properties of Transactions

Four basic (ACID) properties of a transaction are:

Atomicity ‘All or nothing’ property.

Consistency Must transform database from one consistent
state to another.

Isolation Partial effects of incomplete transactions
should not be visible to other transactions.

Durability Effects of a committed transaction are
permanent and must not be lost because of later failure.

© Pearson Education Limited 1995, 2005



9

DBMS Transaction Subsystem

© Pearson Education Limited 1995, 2005

10

Concurrency Control

Process of managing simultaneous operations on
the database without having them interfere with
one another.

 Prevents interference when two or more users
are accessing database simultaneously and at
least one is updating data.

 Although two transactions may be correct in
themselves, interleaving of operations may
produce an incorrect result.

© Pearson Education Limited 1995, 2005



11

Need for Concurrency Control

 Three examples of potential problems caused by
concurrency:

– Lost update problem.

– Uncommitted dependency problem.

– Inconsistent analysis problem.

© Pearson Education Limited 1995, 2005

12

Lost Update Problem

 Successfully completed update is overridden by
another user.

 T1 withdrawing £10 from an account with balx,
initially £100.

 T2 depositing £100 into same account.

 Serially, final balance would be £190.

© Pearson Education Limited 1995, 2005



13

Lost Update Problem

 Loss of T2’s update avoided by preventing T1

from reading balx until after update.

© Pearson Education Limited 1995, 2005

14

Uncommitted Dependency Problem (dirty read)

Occurs when one transaction can see
intermediate results of another transaction
before it has committed.

 T4 updates balx to £200 but it aborts, so balx

should be back at original value of £100.

 T3 has read new value of balx (£200) and uses
value as basis of £10 reduction, giving a new
balance of £190, instead of £90.

© Pearson Education Limited 1995, 2005



15

Uncommitted Dependency Problem

 Problem avoided by preventing T3 from
reading balx until after T4 commits or aborts.

© Pearson Education Limited 1995, 2005

16

Inconsistent Analysis Problem

Occurs when transaction reads several values
but second transaction updates some of them
during execution of first.

 Sometimes referred to as fuzzy read or
unrepeatable read.

 T6 is totaling balances of account x (£100),
account y (£50), and account z (£25).

Meantime, T5 has transferred £10 from balx to
balz, so T6 now has wrong result (£10 too high).

© Pearson Education Limited 1995, 2005



17

Inconsistent Analysis Problem

 Problem avoided by preventing T6 from reading
balx and balz until after T5 completed updates.

© Pearson Education Limited 1995, 2005

18

Concurrency Control Techniques

 Two basic concurrency control techniques:

– Locking,

– Timestamping.

 Both are conservative approaches: delay
transactions in case they conflict with other
transactions.

Optimistic methods assume conflict is rare and
only check for conflicts at commit.

© Pearson Education Limited 1995, 2005



19

Locking

Transaction uses locks to deny access to other
transactions and so prevent incorrect updates.

Most widely used approach to ensure
serializability.

Generally, a transaction must claim a shared
(read) or exclusive (write) lock on a data item
before read or write.

 Lock prevents another transaction from
modifying item or even reading it, in the case of a
write lock.

© Pearson Education Limited 1995, 2005

20

Locking - Basic Rules

 If transaction has shared lock on item, can read
but not update item.

 If transaction has exclusive lock on item, can both
read and update item.

 Reads cannot conflict, so more than one
transaction can hold shared locks simultaneously
on same item.

 Exclusive lock gives transaction exclusive access
to that item.

© Pearson Education Limited 1995, 2005



21

Locking - Basic Rules

 Some systems allow transaction to upgrade read
lock to an exclusive lock, or downgrade exclusive
lock to a shared lock.

© Pearson Education Limited 1995, 2005

22

Example - Incorrect Locking Schedule

 For two transactions above, a
valid schedule using these rules
is:

S = {write_lock(T9, balx), read(T9, balx),
write(T9, balx), unlock(T9, balx),
write_lock(T10, balx), read(T10, balx),
write(T10, balx), unlock(T10, balx),
write_lock(T10, baly), read(T10, baly),
write(T10, baly), unlock(T10, baly),
commit(T10), write_lock(T9, baly),
read(T9, baly), write(T9, baly),
unlock(T9, baly), commit(T9) }

© Pearson Education Limited 1995, 2005



23

Example - Incorrect Locking Schedule

 If at start, balx = 100, baly = 400,
result should be:

– balx = 220, baly = 330, if T9

executes before T10, or

– balx = 210, baly = 340, if T10

executes before T9.

 However, result gives balx = 220
and baly = 340.

 S is not a serializable schedule.

© Pearson Education Limited 1995, 2005

24

Example - Incorrect Locking Schedule

 Problem is that transactions release locks too
soon, resulting in loss of total isolation and
atomicity.

 To guarantee serializability, need an additional
protocol concerning the positioning of lock and
unlock operations in every transaction.

© Pearson Education Limited 1995, 2005



25

Two-Phase Locking (2PL)

Transaction follows 2PL protocol if all locking
operations precede first unlock operation in
the transaction.

 Two phases for transaction:

– Growing phase - acquires all locks but
cannot release any locks.

– Shrinking phase - releases locks but cannot
acquire any new locks.

© Pearson Education Limited 1995, 2005

26

Preventing Lost Update Problem using 2PL

© Pearson Education Limited 1995, 2005



27

Preventing Uncommitted Dependency Problem
using 2PL

© Pearson Education Limited 1995, 2005

28

Preventing Inconsistent Analysis Problem using
2PL

© Pearson Education Limited 1995, 2005



29

Deadlock

An impasse that may result when two (or more)
transactions are each waiting for locks held by the
other to be released.

© Pearson Education Limited 1995, 2005

30

Deadlock

Only one way to break deadlock: abort one or
more of the transactions.

 Deadlock should be transparent to user, so
DBMS should restart transaction(s).

 Three general techniques for handling deadlock:

– Timeouts.

– Deadlock prevention.

– Deadlock detection and recovery.

© Pearson Education Limited 1995, 2005



31

Timeouts

 Transaction that requests lock will only wait for a
system-defined period of time.

 If lock has not been granted within this period,
lock request times out.

 In this case, DBMS assumes transaction may be
deadlocked, even though it may not be, and it
aborts and automatically restarts the transaction.

© Pearson Education Limited 1995, 2005

32

Deadlock Prevention

 DBMS looks ahead to see if transaction would
cause deadlock and never allows deadlock to
occur.

 Could order transactions using transaction
timestamps:

– Wait-Die - only an older transaction can wait
for younger one, otherwise transaction is
aborted (dies) and restarted with same
timestamp.

© Pearson Education Limited 1995, 2005



33

Deadlock Prevention

– Wound-Wait - only a younger transaction can
wait for an older one. If older transaction
requests lock held by younger one, younger one
is aborted (wounded).

© Pearson Education Limited 1995, 2005

34

Deadlock Detection and Recovery

 DBMS allows deadlock to occur but recognizes it
and breaks it.

 Usually handled by construction of wait-for
graph (WFG) showing transaction dependencies:
– Create a node for each transaction.
– Create edge Ti -> Tj, if Ti waiting to lock item locked

by Tj.

 Deadlock exists if and only if WFG contains
cycle.

WFG is created at regular intervals.

© Pearson Education Limited 1995, 2005



35

Example - Wait-For-Graph (WFG)

© Pearson Education Limited 1995, 2005

36

Recovery from Deadlock Detection

 Several issues:

– choice of deadlock victim;

– how far to roll a transaction back;

– avoiding starvation.

© Pearson Education Limited 1995, 2005



37

Database Recovery

Process of restoring database to a correct state in
the event of a failure.

 Need for Recovery Control

– Two types of storage: volatile (main memory) and
nonvolatile.

– Volatile storage does not survive system crashes.

– Stable storage represents information that has
been replicated in several nonvolatile storage
media with independent failure modes.

© Pearson Education Limited 1995, 2005

38

Types of Failures

 System crashes, resulting in loss of main
memory.

Media failures, resulting in loss of parts of
secondary storage.

 Application software errors.
 Natural physical disasters.
 Carelessness or unintentional destruction of

data or facilities.
 Sabotage.

© Pearson Education Limited 1995, 2005



39

Transactions and Recovery

 Transactions represent basic unit of recovery.

 Recovery manager responsible for atomicity and
durability.

 If failure occurs between commit and database
buffers being flushed to secondary storage then,
to ensure durability, recovery manager has to
redo (rollforward) transaction’s updates.

© Pearson Education Limited 1995, 2005

40

Transactions and Recovery

 If transaction had not committed at failure time,
recovery manager has to undo (rollback) any
effects of that transaction for atomicity.

 Partial undo - only one transaction has to be
undone.

Global undo - all transactions have to be
undone.

© Pearson Education Limited 1995, 2005



41

Example

 DBMS starts at time t0, but fails at time tf. Assume data 
for transactions T2 and T3 have been written to secondary 
storage. 

 T1 and T6 have to be undone. In absence of any other
information, recovery manager has to redo T2, T3, T4, and
T5.

© Pearson Education Limited 1995, 2005

42

Recovery Facilities

 DBMS should provide following facilities to
assist with recovery:

– Backup mechanism, which makes periodic
backup copies of database.

– Logging facilities, which keep track of current
state of transactions and database changes.

– Checkpoint facility, which enables updates to
database in progress to be made permanent.

– Recovery manager, which allows DBMS to
restore database to consistent state following a
failure.

© Pearson Education Limited 1995, 2005



43

Log File

 Contains information about all updates to
database:

– Transaction records.

– Checkpoint records.

Often used for other purposes (for example,
auditing).

© Pearson Education Limited 1995, 2005

44

Log File

 Transaction records contain:

– Transaction identifier.

– Type of log record, (transaction start, insert, 
update, delete, abort, commit).

– Identifier of data item affected by database 
action (insert, delete, and update operations).

– Before-image of data item.

– After-image of data item.

– Log management information.

© Pearson Education Limited 1995, 2005



45

Sample Log File

© Pearson Education Limited 1995, 2005

46

Log File

 Log file may be duplexed or triplexed.

 Log file sometimes split into two separate
random-access files.

 Potential bottleneck; critical in determining
overall performance.

© Pearson Education Limited 1995, 2005



47

Checkpointing

Checkpoint
Point of synchronization between database
and log file. All buffers are force-written to
secondary storage.

 Checkpoint record is created containing
identifiers of all active transactions.

When failure occurs, redo all transactions that
committed since the checkpoint and undo all
transactions active at time of crash.

© Pearson Education Limited 1995, 2005

48

Checkpointing

 In previous example, with checkpoint at time tc,
changes made by T2 and T3 have been written to
secondary storage.

 Thus:

– only redo T4 and T5,

– undo transactions T1 and T6.

© Pearson Education Limited 1995, 2005



49

Recovery Techniques

 If database has been damaged:
– Need to restore last backup copy of database and

reapply updates of committed transactions using
log file.

 If database is only inconsistent:
– Need to undo changes that caused inconsistency.

May also need to redo some transactions to ensure
updates reach secondary storage.

– Do not need backup, but can restore database
using before- and after-images in the log file.

© Pearson Education Limited 1995, 2005


