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Abstract—Text-independent speaker verification is a task of
verifying a speaker identity from a characteristic of voice. We
proposed the combined deep Convolutional Neural Network
(CNN) consisting of (i) the first CNN trained to achieve gender
classification which is then used to create a gender-like embedding
and (ii) the last CNN trained with one additional input, the
gender-like feature (embedding) from the first, to classify each
speaker. The classification layer of the last CNN is removed to
allow the remaining combined deep CNN for one-shot learning
and verification of unobserved speaker. Our proposed CNN
could obtain better results compared to VGGVox (ResNet-50)
by 0.40% of Equal Error Rate (EER) on average. Additionally,
we investigated results based on the scenario that the gender is
known; the evaluation was performed only on utterance pairs
that comply with the scenario. The EER rate of such case that
only gender of claimed identity is known is 0.52% lower than
that of VGGVox (ResNet-50) on average of two genders. In
a more specific situation that the gender of person making a
claim is also known, two dedicated networks were retrained for
female and male, in addition to our first network which was
trained for both. It is interesting that, when compared to the first
network, the female network achieved less EER on female-female
verification, while the network dedicated for male performed
worse. Nevertheless, our two dedicated networks outperformed
VGGVox (ResNet-50) by 0.88% of EER.
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I. INTRODUCTION

Speaker verification (SV) is a task which verifies whether a
human voice is uttered from the claimed speaker. The concept
of SV is a subset of speaker recognition (SR). It can be split
into two modes: text-dependent and text-independent. In the
scenario of text-dependence, a word, a phrase, or a sentence
is designated as a target together with characteristics of a
speaker’s voice; the pre-defined text is used as a password
constraint. On the other hand, the text-independent approach
does not require the knowledge about what the utterance is.
It uses only voice characteristics to distinguish between target
speakers and imposters. Therefore, the text-independent SV is
more challenging than the text-dependent SV, especially when
it is used for authentication. In this work, we investigate on
text-independent SV in particular.

Successful conventional methods for SV often apply un-
supervised generative model or statistical model or both, such
as the Gaussian Mixture Model-Universal Background Model
(GMM-UBM) [1]. Some improved GMM with SVM classifier,
e.g., [2]. All of traditional text-independent speaker verification

system was explained well in [3]. Later, I-vector methods
developed from GMM-UBM have been proposed (e.g. [4])
and then further extended by PLDA backend [5], [6] which
helps increase distinctiveness of each speaker by assign more
weight to features that more contributed—however the results
may come from one of local minima because the distinctive
features are not extracted/modeled from the beginning.

Recently, many deep learning based methods have been
proposed in order to automatically construct a feature vector
for samples of one class to be different from others, by
learning from a large training data, which show promising
results in many fields [7], [8], [9]. To avoid retraining of
the neural network when there is a new class, d-vector based
approaches [10], [11], [12] have been invented which allow a
learning of new speaker with a few samples (e.g. utterances
for SV). Some research groups utilized 3D-CNN (Convolu-
tional Neural Network) architecture for text-independent SV
which enables simultaneous training of many samples from
one class. For example, Torfi et al. used such 3D-CNN
architecture and claimed that it is more robust to within-
speaker variation [13]. However, this method still needs more
than one sample (speaker voice) to create a speaker model—
it is unfavorable and impractical in some situations. Chung
et al. proposed one of state-of-the-art method; They created
VGGVox framework that could change CNN architecture and
evaluated them on text-independent SV task. One-shot learning
(one-sample learning) of newly observed person was used to
create speaker model; it was used for speaker verification
later [14], [15]. The best model of VGGVox is trained on
one of well-known CNN architecture ResNet50 and evaluated
on Minimum Detection Cost (minDCF) and Equal Error Rate
(EER)—we used this as our baseline.

This paper proposes a novel approach for text-independent
SV. Instead of data augmentation, voting, refining on archi-
tecture or time pooling layer, and/or selecting loss function
that gives the best result for each architecture, we use gender-
like features to help increase the accuracy of SV. We also
investigate our approach in case we know speaker’s gender.
As SV for same gender tends to be worse (shown in our
result), some modification (suggestion on how to utilize the
proposed method in practice) is presented; it further increases
the accuracy of SV.



II. TEXT-INDEPENDENT SPEAKER VERIFICATION USING
GENDER-LIKE FEATURE

Several methods have been proposed for text-independent
SV. Those SV methods are supposed to be used in many
ways—one of them is for user authentication, e.g., when a
bank clerk needs to verify whether the customer voice on a
phone call is actually of the person that he/she is claiming to
be. In such scenario, EER may be used to evaluate each method
performance by applying SV on many utterance pairs in a data
set. Several data sets have been prepared by many research
groups for this purpose; however, in the scenario that a gender
of person being claimed is known (e.g. when a bank clerk
has information of all customers on database server, including
a gender of customer being claimed), each utterance pair in
the test data set should contain only pair of voices from same
gender—it is unusual to verify if a woman voice is actually of
the man being claimed.

Our study, as explained in the next subsection, shows that
text-independent SV is more difficult when two utterances be-
ing matched are of the same gender—its error much more than
that of different gender. We therefore proposed a gender-like
feature which is used as a hard-constrained feature in addition
to voice characteristics (features) extracted by deep learning
network. Details of our approach are described subsequently.

A. Accuracy Drop in SV of Same Gender

VGGVox, one of state-of-the-art method, reported the
results of SV on three different test sets in terms of EER;
those are duplicated and shown in the first row of Table V.
As shown in the table, the result of SV on VoxCeleb1-H test
set is inferior to (EER is larger than) those of VoxCeleb1 and
VoxCeleb1-E test sets. An obvious difference of these data sets
is that: VoxCeleb1-H test set contains only utterance pair of
the same gender and nationality; while those pairs in the other
two test sets are arbitrary. According to these results, SV for
two voice clips of the same gender is likely to be more error-
prone than that of different gender—this motivates us to use
gender information in learning and verification of speaker with
the aim of improving the performance of SV for two voices
of same gender.

B. Gender-like feature acquisition

In order to obtain a gender-like feature, we train a CNN
(ResNet-50 is used in our experiment) with voice spectrogram
for gender classification (two gender: female and male) as
shown in Fig. 1. Each output from the CNN is normalized
by sigmoid function; all results are passed into a loss function
to measure binary cross entropy of the network during the
training phase. The classification layer (fully connected layer)
is then omitted, allowing the remaining to be used for extrac-
tion of gender-like feature (embedding) from voice (shown as
a shaded box in Fig. 2).

C. Deep CNN training with gender-like feature

Traditional deep CNN for text-independent speaker veri-
fication consists of convolution, pooling, and fully connected
layers (bottom half of Fig. 2)—an input of the network is voice
spectrogram; the output is trained with a loss function. We
emphasize the gender information of the voice by cascading

the gender-like feature, which is extracted by the network in
Fig. 1 (shown as shaded box in Fig. 2), and the traditional
feature vector; finally, the combined feature vector is fed
into the fully connected layer. To keep the sub-network for
gender-like feature extraction (the shaded area in Fig. 2)
unchanged because it has been trained already, the whole
network is trained and fine-tuned (using Triplet loss) with
this sub-network frozen. The feature vector that contains the
distinct part for gender-like property hopefully helps increase
the distance between feature vectors, each of which represents
utterance of speaker (class) from the same gender; performance
of speaker verification of two utterances of the same gender
expectedly rises as the result.

D. Speaker verification

After training phase, we generalize our network for voices
of new persons who have never been trained, by truncating
all layers in the classification layers and beyond (in Fig. 2)
except the first layer (512 nodes). The remaining network will
generate 512-D vector; it is used for user (voice) enrollment
and then for verification of person. The enrollment phase will
register each speaker voice—here we use one-shot learning
approach, i.e. only one utterance for each person is used
for person enrollment. The verification phase is for verifying
whether or not each new voice is of the enrolled person. The
process starts from generating 512-D vector using the same
network. That feature vector is then compared to the vector
of enrolled person being claimed using cosine similarity; high
score means two voices have more likeliness to be of the same
person.

III. EXPERIMENTS AND RESULTS

Our proposed method is evaluated using EER metric. We
assume that the method will be used for authentication of
a customer that is talking to a staff either in person or on
a phone—the staff may be a human or a bot. In such use
case scenarios, the gender of the person being claimed by
that customer is known because all customers’ information
is kept in database; however the gender of the man/woman
who is talking to the staff may be known (if the staff could
determine his/her gender by appearance or voice) or maybe
not (if the staff is the bot that has no such ability). By taking
into account those scenarios, we created two evaluation sets
for both scenarios. Details are explained in Subsection III-B.

A. Settings

Our network requires voice spectrograms as an input.
The spectrogram of each voice is computed from raw audio
(16kHz) in a sliding window manner—here, hamming window
of width 25 ms (millisecond) and step 10 ms is used. It pro-
duces 512 × 300 voice spectrograms for 3-second utterance.
Our training data was organized to many batches; one batch
has 64 utterances (each utterance is cropped from voice clip
and has 3 seconds long). We trained them parallelly on two
RTX 2080 TI GPUs for 30 epochs (or until validation loss
converged). Stochastic Gradient Descent (SGD) with momen-
tum equals to 0.9, weight decay of 5×10−4, and learning rate
with exponential decay (initialized to 10−2) are employed in
the experiments.



Fig. 1. Network for gender-like feature acquisition (training phase)

Fig. 2. Deep CNN with focused gender-like feature for text-independent speaker verification (training phase)

B. Dataset

Two publicly available datasets, VoxCeleb1 [14] and Vox-
Celeb2 [15], are used in the experiments. All utterances
were retrieved from YouTube videos without post-processing.
Therefore, some voice clips may be contaminated by back-
ground noises.

We used VoxCeleb2 (Dev), which has 5,994 classes (2,312
females and 3,682 males), in training and fine-tuning our
network—there are 694,977 male utterances and 397,032 fe-
male utterances, as shown in Table I. 1,251 classes (2,312
females and 3,682 males) from VoxCeleb1 were used for
performance evaluation—classes (persons) in VoxCeleb1 are
all different from classes (persons) in VoxCeleb2 (Dev).
Our experiments used three test sets—‘original VoxCeleb1’,
‘VoxCeleb1-E’ and ‘VoxCeleb1-H’—from VoxCeleb1 (same
as [15]) which contains many utterance pairs as detailed in
Table II.

To evaluate the performance of our method under the
scenarios explained above, we created two groups of utterance
pairs, as shown in Table III and IV, which are rearranged from
three test sets in Table II.

The first evaluation data group (Table III) assumes the

TABLE I. STATISTICS OF ‘VOXCELEB2 (DEV)’ DATASET WHICH IS
USED FOR TRAINING. EACH SAMPLE IS AN UTTERANCE.

Female Male Total

No. of utterances 397,032 694,977 1,092,009

No. of classes 2,312 3,682 5,994

TABLE II. STATISTICS OF ‘VOXCELEB1’ TEST SET. EACH SAMPLE IS
AN UTTERANCE PAIR.

Gender in a pair Original VoxCeleb1 VoxCeleb1-E VoxCeleb1-H

Class in a pair

different same different same different same

Same (Female) 1,524 5,512 50,685 121,587 113,598 113,602
Same (Male) 9,228 13,348 98,856 169,156 162,668 162,668
Different 8,108 - 141,196 - - -
Sub-total 18,860 18,860 290,737 290,743 276,226 276,270

Total 37,720 581,480 552,536

scenario when we know the gender of person being claimed
but not of the person making a claim. If someone claims to
be some woman registered in the system, the first two rows
of Table III will be used for evaluation (case A1). If the man
is the target of being claimed, the last two rows is used (case
A2)



TABLE III. STATISTICS OF ‘VOXCELEB1’ TEST SET WHICH IS
REARRANGED ACCORDING TO THE TEST SCENARIO THAT THE GENDER OF

PERSON BEING CLAIMED IS KNOWN

Case Gender in a pair Original VoxCeleb1 VoxCeleb1-E VoxCeleb1-H

A1 Same (Female) 7,036 172,272 227,200
Different 8,108 141,146 -

A2 Same (Male) 22,576 268,012 325,336
Different 8,108 141,146 -

TABLE IV. STATISTICS OF REORGANIZED ‘VOXCELEB1’ TEST SET ON
THE CONDITION THAT THE GENDERS OF PERSONS MAKING A CLAIM AND

BEING CLAIMED ARE KNOWN. ONLY PAIRS OF SAME GENDER
UTTERANCES ARE REQUIRED IN THIS TEST SCENARIO.

Case Gender in a pair Original VoxCeleb1 VoxCeleb1-E VoxCeleb1-H

B1 Same (Female) 7,036 172,272 227,200
B2 Same (Male) 22,576 268,012 325,336

The other group (Table IV) assumes that the gender of
person making a claim and gender of user account being
claimed are known; this group therefore contains only those
utterance pairs of which each comprises of two voices of same
gender—we defined female-female pairs as case B1 and male-
male pairs as case B2 (no need to compare two utterances of
different genders).

C. Training

The CNN for gender-like feature extraction in Fig 1 was
trained using utterances from VoxCeleb2 (Dev) (Table I).
This network—without classification layer—was then used for
obtaining gender-like feature, which was later integrated into
the SV network (Fig. 2). We performed three experiments
on the SV network as to three scenarios of usage: when no
gender prior is known (experiment I); when the gender of
user account being claimed is known (experiment II); and
when the genders of user account being claimed and person
making a claim are known (experiment III). In order to serve
those scenarios, the SV network was trained in two ways: (i)
one SV network—later called ‘general SV-CNN’—was trained
without gender info, i.e. using the whole utterances from
VoxCeleb2 (dev) (the last column in Table I); and (ii) two
instances of dedicated SV network—later called ‘male SV-
CNN’ and ‘female SV-CNN’—were trained separately, each
used utterances of only one gender (male or female: the first
two columns of Table I). Note that utterances of each person
in VoxCeleb2 (dev) comes from several recording scenarios.
We randomly selected one recording for each person and
used all utterances from that recording for validation; the
remaining were used in the training. The network was trained
and validated until it converged; it is then fine-tuned using
triplet loss. The computational complexity of the training in
one epoch, in terms of time, is 7.5, 2.0, and 4.5 hours for the
‘general SV-CNN’, ‘female SV-CNN’, and ‘male SV-CNNN’
respectively.

D. Evaluation

The network which was trained and fine-tuned will be eval-
uated using VoxCeleb1 test set that contains many utterance
pairs—two voices in the pair may be of the same or different
person. One utterance in the pair is for one-shot learning of
user voice and the other for verification. Since the persons

TABLE V. PERFORMANCE (EER%) OF VGGVOX AND GENERAL
SV-CNN (OUR METHOD)

Method Original VoxCeleb1 VoxCeleb1-E VoxCeleb1-H

VGGVox 3.95 4.42 7.33
General SV-CNN (our method) 4.08 3.86 6.54

TABLE VI. NUMBERS OF ERRORS (TOP VALUE) AND ERROR RATES
(BELOW VALUE IN PARENTHESIS) OF GENERAL SV-CNN (OUR METHOD)

Gender in a pair Original VoxCeleb1 VoxCeleb1-E VoxCeleb1-H

Class in a pair

different same different same different same

Same (Female) 150 129 4,483 4,500 9,131 7,071
(9.84%) (2.34%) (8.84%) (3.70%) (8.03%) (6.22%)

Same (Male) 616 641 6,358 6,738 8,953 11,014
(6.67%) (4.80%) (6.43%) (3.98%) (5.50%) (6.77%)

Different 4 - 395 - - -(0.05%) (0.28%)

Sub-total 770 770 11,236 11,238 272,266 272,270
(4.08%) (4.08%) (3.86%) (3.86%) (6.54%) (6.54%)

in VoxCeleb1 are totally different from those of VoxCeleb2
(dev), generalization of the trained network will be proved with
low error rate. Note that the performance of our approach is
measured in terms of EER. The computational complexity of
the one-shot learning in registration of user voice or creating
an embedding vector of incoming user in authorization, in
terms of time, is 2.43 seconds (average of 27 arbitrary-lengthy
utterances). Details of experiments on three usage scenarios
are explained next.

E. Experiment I: (general scenario)

Our general SV-CNN, which was fine-tuned already, was
evaluated on three test sets. The results are shown in Table V.
The results of VGGVox method [15] are also shown here for
comparison. Although our general SV-CNN is slightly inferior
to VGGVox on original VoxCeleb1 test set, it is better (EER
is less). The number of utterance pairs in original-VoxCeleb1
(37,720 pairs) is far less than those of VoxCeleb1-E (581,480
pairs) and VoxCeleb1-H (552,536 pairs); therefore, our general
SV-CNN is generalized better than VGGVox by inference. It is
worth noting that our ‘general SV-CNN’ obtained 0.40% less
EER than VGGVox on average.

Table VI shows more details of our performances; numbers
of errors and error rates (in percentage) of our general SV-CNN
on three subgroups of those test sets are shown. According to
the results, verification of two utterances of the same gender
but different person has more error than those of the same
person—i.e. false-positive rate (FPR) is larger than the false-
negative rate (FNR) when trying to verify two voices of the
same gender. This does not align with the overall EER in
Table V (the overall EER is measured on all cases; its value
is repeated in the ‘Sub-total’ row of Table VI). It means
unauthorized persons are granted access more than expected.
It is not desirable, especially when the gender is known and
most verifications are performed on two utterances of the
same gender. We therefore proposed the training method that
focuses on this scenario; experimental results are shown in
next subsections.



TABLE VII. PERFORMANCE (EER%) OF OUR GENERAL SV-CNN
(OUR METHOD) WHEN ONLY GENDER OF USER BEING CLAIMED IS KNOWN.

Gender of
Case two utterances Method OriginalVoxCeleb1 VoxCeleb1-E VoxCeleb1-H

in the pair

A1 Female–Unisex General SV-CNN 1.87 3.05 7.03
A2 Male–Unisex General SV-CNN 4.13 3.37 6.17

Weighted average General SV-CNN 3.38 3.23 6.52

TABLE VIII. PERFORMANCE (EER%) COMPARISON OF OUR
SV-CNNS (GENERAL AND DEDICATED NETWORKS) WHEN THE GENDER
OF USER BEING CLAIMED AND THAT OF PERSON MAKING A CLAIM ARE

KNOWN.

Gender of Our method
Case two utterances (SV-CNN) OriginalVoxCeleb1 VoxCeleb1-E VoxCeleb1-H

in the pair

B1 Female–Female General 5.04 5.71 7.03
Dedicated (female) 4.33 5.66 6.34

B2 Male–Male General 5.60 4.99 6.17
Dedicated (male) 6.29 5.43 6.53

Weighted average General 5.46 5.27 6.52
Dedicated (female & male) 5.82 5.51 6.45

F. Experiment II: (only gender of claimed user is known)

In this experiment, we assumed that someone (male or
female) tries to use our unattended system by claiming that he
or she is one of our customer. Our system knows the gender
of our customer (by checking the information in database) but
not of the coming user. Two separate scenarios could happens:
one is when the gender of user being claimed is female (case
A1) and the other is when the account being claimed is of male
(case A2). In such cases, we can use our ‘general SV-CNN’
(the same network used in experiment I) with two decision
thresholds—each is dedicated to each case (this is possible
because the system knows the gender of user being claimed).
Each threshold is obtained during the evaluation of our general
SV-CNN on utterance pairs that satisfy the gender constraint of
corresponding case, i.e. finding the best threshold that give the
lowest EER. The results, in terms of EER, on three VoxCeleb1
test sets are shown in Table VII. Weighted average EERs are
also listed in the last row. Note that the EER of VoxCeleb1-H
is approximately twice of the other two—this test set contains
only utterance pairs of same gender, which is more difficult to
correctly verify the speaker.

As shown in Table VII and V, the weighted average EER
of general SV-CNN with two thresholds (the last row of
Table VII) is less than the EER of the same network with one
threshold (the last row of Table V). Provided that the gender
of user being claimed is known, our general SV-CNN with
two dedicated thresholds (one for matching the incoming user
with female customer in the database; the other with male
customer) is therefore preferable to general SV-CNN with one
threshold. It is noteworthy that our twin-threshold ‘general SV-
CNN’ obtained 0.52% less EER than VGGVox on average.

G. Experiment III: (genders of claimed user and claiming
person are known)

Assuming that a customer comes to a service counter to
make a transaction. He (or she) declares himself (or herself)
as one of the customer. In such case, a counter staff knows
the gender of that customer and also that of the one he
(or she) is claiming to be. This experiment assumed such
situation. Therefore the performance of speaker verification

should evaluated only on a pair of utterances that belongs to
a same gender—matching of one gender’s voice to the other
gender’s is an invalid case and will never happen. The test
sets that are reorganized according to the above-mentioned
situation are shown in Table IV: case B1 contains only pairs
of two female voices while case B2 consists of male utterance
pairs.

As did in experiment II (see Subsection III-F), we used
the ‘general SV-CNN’ with two decision thresholds, but here
it was evaluated on speaker verification of only same gender.
We also used our two dedicated SV-CNNs—one is ‘female SV-
CNN’ and the other is ‘male SV-CNN’ (they are the retrained
networks which were explained in Subsection III-C)—for
speaker verification of the same test sets. Experimental results
are shown in Table VIII. The ‘female SV-CNN’ is superior
to the ’general SV-CNN’ when matching two utterances of
female; this means the dedicated network trained specifically
for female-female speaker verification can increase the ability
of classification. On the other hand, it is interesting that the
‘dedicated SV-CNN’ for male has higher EER than the ‘general
SV-CNN’—the reason is needed to be investigated. According
to these outcomes, one may utilize ‘female SV-CNN’ for
female–female verification, and ‘general SV-CNN’ for male-
male.

It is worth mentioning that, here, the result on OriginalVox-
Celeb1 and VoxCeleb1-E test sets cannot be compared to those
of experiments I and II, because utterance pairs (of the same
gender) used in this experiment are only subset of the whole
test sets used in those experiments. However, we can compare
the results on VoxCeleb1-H since this test set contains only
voice pairs of the same gender. On that test set, our two
dedicated SV-CNNs achieved EER of 6.45% on average—this
is better than VGGVox and our ‘twin-threshold general SV-
CNN’ which obtained EER of 7.33% and 6.52% respectively.

IV. CONCLUSIONS

In this paper, we introduced a combined CNN with a
gender-like feature for text-independent speaker verification.
We demonstrated our proposed method on the VoxCeleb1 test
sets and compared the result to VGGVox. The generalization
of our network to verification of utterance with one-shot
learning is superior to VGGVox; this includes the special
case when two voices being matched are of the same gender
(VoxCeleb1-H test set). In addition, we evaluated our network
in particular situations: when the gender of claimed user can
be read from a database, and when the gender of customer
can also determined (maybe by a service person). Based on
this prior information, the proposed network could be tuned or
retrained for matching of each specific gender; the evaluation
on valid test cases corresponding to each situation showed
more promising results. We have found another state-of-the-
art architecture that improved time-aggregation [16] and had
better results when compared to VGGVox; our preliminary
analysis of error reveals that its improvement on VGGVox is
partly different from ours, e.g. in terms of error mode. Further
investigation on this is to be done in the future.
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