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Abstract—Autonomous driving cars are important due to
improved safety and fuel efficiency. Various techniques have been
described to consider only a single task, for example, recognition,
prediction, and planning with supervised learning techniques.
Some limitations of previous studies are: (1) human bias from
human demonstration; (2) the need for multiple components
such as localization, road mapping efc. with a complicated fusion
logic; (3) in reinforcement learning, the focus was mostly on the
learning algorithms but less on the evaluation of different sensors
and reward functions. We describe end-to-end reinforcement
learning for an autonomous car, which used only a single
reinforcement learning model to create the autonomous car.
Further, we designed a new efficient reward function to make the
agent learn faster (18% improvement for all settings compared
to the baseline reward function) and build the car with only the
necessary perceptions and sensors. We show that it performed
better with state-of-the-art off-policy reinforcement learning for
continuous action (SAC, TD3).

I. INTRODUCTION

Autonomous driving cars will significantly change urban
mobility. They have not only high impact on the environ-
ment [1H3] but also to society, for example, good productivity
gains while commuting [1} 4} 5], reducing drivers’ stress and
road accidents [6], and decreasing requirements for parking
space [7]. Also, it can decrease 38 hours of commuting time
per individual per year [8]. Due to advances in computer
hardware technology, the capability of artificial intelligence
has improved over recent years, especially deep learning. Deep
learning is a subset of machine learning, that enables the
computer to learn and improve performance automatically.
It uses a layered structure of algorithms—an artificial neural
network—inspired by the neural network of the human brain.
Most current autonomous driving cars used multiple machine
learning algorithms to learn how to drive [9].

Machine learning algorithms can be divided into three
major types: supervised, unsupervised and reinforcement learn-
ing [10]. A supervised learning algorithm trains a model on
labelled data, for example, localization [11, [12] and road
mapping [13[]. This approach is laborious as data collection
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is required. It can lead to a biased model, due to the innate
nature of biases, within humans when labelling the data.
Unsupervised learning trains with unlabeled data. It requires
many samples to understand the patterns and properties of the
data, e.g. to learn to group samples. Unsupervised learning
techniques are used in autonomous driving cars, e.g. anomaly
detection [[14], generating synthetic data with generative adver-
sarial networks [15]. Reinforcement learning involves taking
decisions to perform suitable actions, by maximizing reward
in a specific situation [16].

Many researchers have tried to use reinforcement learning
to control an autonomous driving car [3, 9, [17H19]. They
showed that using reinforcement learning in an autonomous
car is simpler than supervised learning, because supervised
learning requires multiple models to make the car work.
Reinforcement learning has shown great potential in various
challenging scenarios, that require both dynamic modelling
and long term planning, e.g. game playing [20], real-time
advertisement bidding [21, 22] and neural network structure
searching [23| 24]]. Reinforcement learning falls into two types
by policy learning—on-policy learning and off-policy learning.
An on-policy agent learns from observed rewards, generated
from some policy. Usually on-policy learning is more efficient.
Reinforcement learning is considered for discrete and con-
tinuous domains. For driving cars, a continuous action space
seems appropriate. Some researchers reduced the continuous
action space for car driving to a discrete one [25]. However,
we cannot clearly divide all the actions into discrete ones. It
might lead to a sub-optimal sequence of actions.

Some previous work focused on developing reinforcement
learning for autonomous cars in computer games [9, (18} [26],
which had no focus on the perception and sensor aspect.
In contrast, we developed reinforcement learning for an au-
tonomous car with sensory input in a simulator. Here, we
focused on off-policy learning, because we wanted to enable
the agent to be quickly trained. Also, a continuous action space
was used as it is more realistic. Our contributions are:

i) We implemented end-to-end deep reinforcement learning



to drive the model, instead of supervised learning with
multiple models in a custom environment.

i) We compared two state-of-the-art off-policy continuous
control algorithms, one with stochastic and one with
deterministic polices.

iii) A new reward function for learning to drive was used. It
yielded better results than the baseline reward function.

iv) We investigated two types of perception, which were
distance sensors and a front camera: both perceptions were
useful for autonomous driving cars.

II. RELATED WORK

Autonomous cars have been an extremely active research
area in robotics, artificial intelligence and control. Many pa-
pers have discussed methods to control the car automatically,
but they require many components for full control. Creating
an autonomous agent requires three main tasks—recognition,
prediction and planning [18| 26].

Recognition identifies the surrounding environment, e.g.
localization [11} [12], offline obstacle mapping [27], road map-
ping [[13], etc. This task is relatively well understood, thanks to
advances in machine learning algorithms, which have reached
human-level recognition in some detection and classification
problems [28| 29]. Next, prediction is required. After we
recognized the environment, we still need to build internal
models, that can predict the future state of the environment.
This is followed by planning, that enables the car to navigate
successfully. It aims to generate an efficient sequence of
driving actions.

As the traditional approach required many components, it
is necessary to have a well-designed framework to combine all
parts. The end-to-end concept tackled this issue, by replacing
the handcrafted processes, with an automatically learnt fea-
ture representation module, using deep learning techniques.
Recently, Bojarski et al. [30] used end-to-end learning for an
autonomous car. They trained a convolutional neural network
(CNN) [31] to map raw pixels from a single front-facing cam-
era directly to steering commands. Surprisingly, this approach
was powerful, but it needed a lot of effort in collecting the data
from human demonstration. The limitation of this approach
was that not every car has a front camera and can collect
the steering commands data. Chopra and Roy [9] used an
end-to-end reinforcement learning to learn how to drive. They
used the Deep Q-network algorithm, with discrete action to
train an agent from images. Chishti et al. [25] used CNN
to classify objects in the environment, e.g. road signs and
traffic lights. They combined them to define a reward function.
Then they trained a model with reinforcement learning in
conjunction with their reward function in discrete settings.
Kadam et al. [19] compared imitation learning [32] with a deep
deterministic policy gradient (DDPG) method, a reinforcement
learning algorithm for continuous settings.

Thus, some works have discussed end-to-end reinforcement
learning for autonomous cars, but they only considered images
as input, without any additional perception or sensors. More-
over, they did not pay much attention to the reward function.

III. METHODOLOGY

This section explains an off-policy reinforcement learning
for continuous actions to learn how to drive in the simulator,

that we built (see Subsection [[IlI-A)), and corresponding reward
(see Subsection [I1I-B).

A. Reinforcement Learning

The reinforcement learning agent learns to achieve a goal in
an uncertain environment without a supervisor. It interacts with
the environment and used trial and error to learn an optimum
policy for sequential decisions, which, in turn, maximizes
cumulative reward. The essential underlying model of rein-
forcement learning is a Markov Decision Process (MDP) [33].
An MDP is defined as a tuple (S, A, P, R,~), where S is a
state-space, A is an action space and P is a state transition
probability function, that define the probability to move to the
next state, s’ € S, when we observe state s € S and choose
the action a € A. For continuous actions or state spaces the
mathematical definition is more complicated. R is a reward—
Sx Ax S~ Rand~ € [0,1] is a discount rate.

The objective of an agent in MDP is to find an optimal
(probabilistic) policy, mp: S x A — [0, 1], that maximizes the
expected cumulative rewards from any state s:

oo

V*(s) = II}T%XE[Z Yoreklse = s]. (D
k=0

It is equivalent to maximizing the expected cumulative rewards
from any state-action pair, s € S and a € A:

o0

Q*(s,a) = II}‘_%XE[Z Yoreklse = s,a; = al 2)
k=0

In our problem, a state s represents a perception of car
sensor, e.g. a front camera or distance sensors. An action, a €
R, is a continuous parameter, that represents the steering angle.
Transition probability P is a probability of interaction between
state and action of the car. Based on action a and the perception
s, we provided feedback to the algorithm with reward function
R. Discount rate « is a factor measuring the present value
of long-term rewards. If v = 0, the agent considered only
immediate rewards, but ignores long-term rewards, and when
v = 1, the agent considered immediate and long-term rewards
to be equal. Fig. |l| illustrates the agent interaction with the

environment.
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Fig. 1: Markov Decision Process

There are many reinforcement learning algorithms, for
example, Q-learning [20], Policy Gradient [34] and Black-
box Optimization [35]. We focused on two state-of-the-art off-
policy algorithms, that were designed for continuous action.



1) Twin-delayed deep deterministic policy gradient (TD3):
TD3 is a model-free, online algorithm, that uses a determin-
istic policy to choose the actions [36]. It is an extension of
DDPG [37], and it explores by adding some noise to the policy.

2) Soft Actor-Critic (SAC): It uses stochastic policy opti-
mization and a DDPG-style technique. It uses entropy regu-
larization to trade exploration against exploitation. The action
is sampled from the stochastic distribution.

B. Reward function

We used the ‘Collision Penalty’, Rewardc, as a baseline
reward function:

Rewards = —50C, 3)

where C' is a binary: if it is “1”, a collision was detected.

Here, we describe the “Direction Guided” reward function,
that enables the agent to learn to drive faster than the baseline
in our environment. If the target direction of the car is known,
this can be used in the reward function. If the car goes in that
direction, a high reward is received. In contrast, if the car goes
in the opposite direction, it would get a low reward or penalty.

Fig. [2] explains the fundamental of the proposed reward
function. Assuming that a car is driving with a velocity of p.
It is heading toward a direction at Af angle to the direction in
which the car should head in the environment. We can convert
from the magnitude/angle way of specifying a vector to the
coordinate way of expression. Therefore, the x-axis equals
weos (Af) and the y-axis equals psin (A6). The car should
not head toward y-axis, thus psin (A) should be as low as
possible. On the other hand, the car should head toward z-axis,
therefore 1 cos (A) should be as high as possible. This idea
led to this reward function,

Rewardp = picos (Af) — |usin (A6)]. 4)

The direction guided reward values are represented in Fig. [3]
The circumference indicates the angle of the car in respect to
the desired direction, Af@. The distance from the centre of the
circle represents the speed, u. Red implies a negative reward,
whereas blue implies a positive reward.
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Fig. 2: The fundamental of the proposed reward function
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Fig. 3: Direction guided reward function

IV. EXPERIMENTS

We compared performances of the two state-of-the-art off-
policy continuous control algorithms, which were based on a
stochastic policy, SAC, and a deterministic policy, TD3. We
also compared the performance of the model with different
reward functions and different types of perception.

A. Simulator

We created a custom environment from scratch with Py-
Bullet [38]. Fig. f] shows the simple race track used here. We
investigate the model performance when additional perception
was added. Thus, we created three different agents, labelled:

i) Distance sensor car, with seven sensors —90°, —60°,
—30°, 0°, 30°, 60°, and 90° as shown in Fig. 5] Each
sensor returns a value between O and 1.

ii) Front camera car: We used a single 20 x 20 pixel ‘image’.
Example images are shown in Fig. [6).

iii) Combined perception car: We simply used all the seven
sensors and the front camera.

Note: image from the front camera is a 20 x 20 pixel. It
is fed into a CNN to be feature extracted, implemented in
IMPALA [39].

B. Experiment Settings
We split the experiment into two parts:

a) Evaluation of algorithms and reward functions:
We first focus on the distance sensor car. Agents, trained by
SAC and TD3, were compared. Both algorithms were used
in conjunction with the collision penalty and direction guided
reward functions. We set the maximum number of step of the
environment allowed in each epoch of the algorithm to 10,000
steps.



Fig. 4: Simple race track

Fig. 5: Seven distance sensors

b) Comparing the perception of the agent: We com-
pared the three different agents, discussed in Section [[V-A]
trained with SAC and TD3 in conjunction with the direction
guided reward function.

We set the learning rate for each algorithm to 0.0003.
v = 0.9. Replay buffer size was set to 10 and the target
network update, 7 = 0.05. The experiments were implemented
in Python. The source code can be downloaded from https:
/lgithub.com/nutorbit/crazycar [40].

V. RESULTS AND DISCUSSIONS

To compare the reward functions, we monitored the speed
of convergence of each reward function because two rewards
were on a different scale. Therefore, we observed the time-step
achieved in one epoch, as shown in Fig m Both SAC and TD3,
in conjunction with the direction reward function, converged
faster than with the collision penalty reward function. This is
because our new reward function considered the direction of
the car for penalty the agent. On the other hand, the collision
penalty did not consider the direction, but only added a cost
when a collision was detected. Also, SAC converged faster
than TD3 with both penalty functions. This may be because
TD3 did not explore widely, because it used a deterministic

—emuil -

Fig. 6: Example images from the front camera of the car

policy. To explore widely, we normally add some noise to the
policy to encourage new actions. However, adding too much
noise might lead the algorithm more difficult to exploit. On the
other hand, SAC uses a stochastic policy. It balances between
exploration and exploitation with entropy regularization.
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Fig. 7: Number of time steps in one epoch achieved by SAC
and TD3 in conjunction with the baseline and our new reward
functions. One epoch indicates 1 simulation. When the number
of epoch increases, the car can spend more time step to run in
a circuit. The drops indicate that the agents tried to explore.

Then, we studied three different agents—distance sensor,
front-camera, combined perception cars—with TD3 and SAC
in conjunction with the new reward function. Fig. [8] shows
the reward achieved in one similar for SAC (top) and TD3
(bottom). The agent with distance sensors performed better in
both SAC and TD3. The worst agent used a front camera alone.
Also, the agent with the front camera, trained with TD3, failed
to perform as it could not learn anything—the perception from
the front camera may be attributed to its complexity, i.e. it was
too complicated to learn. Combining distance sensors with a
front camera slowly converged to about the same level as the
distance sensor agent only with SAC algorithm. Training a
combined perception agent with TD3 failed to learn, similar
to TD3 with a front camera.

TABLE I: Average number of time steps required to finish one
lap. “N/A” indicates that the algorithm did not finish the lap.

. Perception
Algorithm Reward Distance Sensor | Front Camera | Combine
SAC Rewardc 517.5 531.3 540.1
Rewardp 436.4 450.1 456.8
D3 Rewardc 538.7 N/A N/A
Rewardp 456.8 N/A N/A
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Fig. 8: Rewards from agents with different perceptions trained
with SAC (top) and TD3 (bottom)

Table |I] shows the number of time steps required to finish
one lap. Our new reward function performed better in all
cases. Also, the number of time steps was proportional to the
dimension (1.e. the number of sensor inputs) of perception:
the dimension of an agent with distance sensors only was 7
and with the front camera it was 400—the number of ‘pixels’.
We found that using only the distance sensors was adequate
to drive in our environment, as it is simple. In addition, the
stochastic policy was better than the deterministic one in our
settings.

VI. CONCLUSION

We described end-to-end deep reinforcement learning to
drive a car in a simulator. The stochastic policy, SAC, achieved
better performance than deterministic policy, TD3. Also, our
new reward function was better than the baseline in our
settings. We also showed that using only distance sensors was
enough to train an agent in our settings. In future work, we
plan to extend to a multi-agent system. Therefore, adding more
perception or front cameras to the car might be necessary.
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