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Abstract—Random determination of input weights leads to
unstable performance in Online Sequential Extreme Learning
Machines (OS-ELM), so obtaining reliable input weights was
expected to improve the model performance. We designed a new
model—the OS-ELM based Intrinsic Plasticity with a new weight
selection scheme (NOS-ELM-IP) to enhance the forecast stability
and accuracy for classification. In this model, the input weights
were selected by a new weight selection method, which replaced
the original random selection part in OS-ELM. Moreover, the
Intrinsic Plasticity idea was used to find the gain and bias,
used in the sequential training part of OS-ELM. It maximized
the information of hidden neurons and enlarged the memory.
The experimental results show that the proposed new weight
selection method and Intrinsic Plasticity rule enhanced the overall
performance in classification tasks for binary and multi-class data
sets.

Index Terms—Online Sequential Learning, Intrinsic Plasticity,
Xavier, Uniformed Distribution.

I. INTRODUCTION

Classification is a general problem in pattern recognition.
It is considered as a supervised learning task that seeks
the relationship between a set of given input features and
its corresponding target value. Many classical algorithms,
such as Logistic Regression [1], Naı̈ve Bayes [2], Fisher’s
Discriminant Analysis [3], Support Vector Machine [4], k-
nearest neighbor [5], were designed to solve the binary and
multi-class classification problems. With a dramatic increase
in data size and hardware performance, many algorithms have
been introduced or re-introduced with promising results and
employed in our daily life [6].

Generally, traditional machine learning algorithms are
trained offline by a batch of data. However, with a broad range
of applications in the real world emerging, combined with
an explosion of data, streaming data frequently appears now.
Thus, online learning is necessary as it can update the model
when a new data point arrives [7]. Online algorithms are more
effective than offline ones for a large collections of data, that is
steadily growing and gradually changed overtime [8]. Many
online learning algorithms have been described, e.g. online
support vector machine [9] and online multiple kernel learning
for classification [10].

Extreme Learning Machines (ELM) are thousands time
faster than traditional feed-forward neural networks, such as

back-propagation [11], because input weights are randomly
selected and they do not iterate. However, it still has drawbacks
in applications: For example, an ELM cannot quickly update
the model after a new sample arrived, due to because it relies
an off-line learning algorithm, which limits the development
of real-world applications. In 2006, Liang et al. described an
on-line learning algorithm, their “Online Sequential Extreme
Learning Machine” (OS-ELM) [12]. This is a versatile se-
quential learning algorithm. Chunks of training samples, with
fixed or varied length, are presented one-by-one to the training
algorithm which can train it in any order. Although it solves
the model updating problem, the random selection of input
weights still leads to unstable prediction results with the same
parameter settings. This directly affects performance of the
OS-ELM model.

Random weight initialization can lead to poor performance,
not only in ELM, but also in many other algorithms, for exam-
ple an Echo State Network (ESN) [13] or deep learning [14].
Recently, Wu et al. showed that uniform random weight
distribution, in ESN, led to better performance than a Gaussian
distribution [13]. Glorot and Begio developed a new initial-
ization scheme—the Xavier initialization method—that used
a uniform distribution and normalized initialization method
to approximately satisfy the dual objectives of maintaining
activation and back-propagated gradients variances [14]. The
Xavier method was used to select the weights in deep neural
networks to enhance performance [15], [16]. Further, the range
of random selection also affects the performance of the random
projection ESN and ELM models [17], [18]. If the initial
weights are too large or too small, the model may start with
saturated neurons and be slow or fail to converge. To the best
of our knowledge, no one has used the Xavier initialization
method in OS-ELM and controlled the bounds of input weights
to find the proper values of the input weights for OS-ELM.

In 2005, Intrinsic Plasticity (IP) was introduced by Tri-
esch [19]. It assumed that the neuron firing rate distribution
was approximately exponential. Schrauwen et al. improved
ESN robustness by introducing IP into the model [20]. Us-
ing the IP idea, the probability density of a neuron output
was tuned to an exponential distribution, which maximized
the information of hidden neurons. Further, IP enabled the
connectivity matrix of the reservoir in ESN to have a much



large memory. Thus, the model performed better than using
a Laplace or Gaussian distribution to connect the nodes of
reservoir. It was also successfully applied in ELM [21].

To avoid the limitations mentioned above, we describe a new
weight selection approach for OS-ELM, so that its neurons
will not start training in saturation and the algorithm will be
robust. Further, we added IP to improve OS-ELM robustness,
because it had similar characteristic to ELM and ESN, leading
to an improved method, NOS-ELM-IP.

The paper is organized as follows. Section II briefly sets out
the OS-ELM algorithm. The following section introduces the
new weight selection technique, IP rule, and our algorithm.
Section IV describes our experiments. Section V compares
performance, with the conventional OS-ELM, on a well-
studied set of benchmarks and a real-world data set.

II. REVIEW OF OS-ELM

ELM has attracted many researchers, because of its speed
and performance and many ELM variants have been applied to
real-world applications. Because many applications have real-
time streaming data, an online sequential model is necessary.
This model updates itself based on incoming samples. This
section explains an ELM variant, “OS-ELM”, introduced by
Liang and her colleagues [12].

OS-ELM is a single hidden layer feedforward network
with radial basis function (RBF) hidden nodes in a unified
framework [12]. There are two main parts in its training phase:
initialization and online sequential learning parts. Assuming
that X is an input matrix, with dimensions of N ×D, where
N is the number of samples and D is the number of features.
The input matrix comes with its corresponding output column
vector, y, with length D. There are u neurons in the hidden
layer of OS-ELM with RBF g(·) as an activation function. An
input weight matrix W ∈ Ru×D and a bias vector b ∈ Ru×1

are randomly selected.
In initialization, the initial training size is defined as c where

c < N . The initial hidden matrix, H0, can be computed by
g(W0X

>
0 +b0), where X0 is the initial training samples matrix,

W0 are the initial weights and b0 is an initial bias. Thus, the
initial output weights, β0, can be calculated:

β0 = Z0H
>
0 y0, (1)

where Z0 is an interval matrix, that can be calculated from
(H>0 H0)

−1, and y0 represents the initial target data.
Then the sequential learning part starts from the samples,

xc+1 to xN . The partial hidden layer output matrix, at l-th
sequential training data,

Hl = g(W · xl + b), (2)

where W are the input weights, b is a bias and xl is the
sequential training data at sample l, l = [c+1, . . . , N ]. Thus,
the output weights, βl, can be updated by

βl = βl−1 + ZlH
>
l (yl −Hlβl−1), (3)

where βl−1 are the previous output weights. Zl is an interval
matrix:

Zl = Zl−1 − Zl−1H
>
l (I + HlZl−1H

>
l )
−1HlZl−1, (4)

where I is a sparse identity matrix.

III. METHODOLOGY

In this paper, we describe a new method to overcome
the drawbacks of OS-ELM and enhance classification perfor-
mance. Firstly, we replaced the random weight selection in
OS-ELM, by introducing a new weight selection method, that
reduces forecasting instability and improves prediction. Then,
the IP rule was applied in the online sequential part to produce
the desired output distributions of the hidden neurons.

A. New Weight Selection

Due to the random selection for ELM input weights, output
forecasts can be unstable, even using the same parameters.
Thus, a new weight selection inspired by Xavier initialization
was used, instead of random selection to generate more stable
results.

The variance of initial weights of the i-layer in the deep
learning model was

Var(Wi
ini) =

2

ni + ni+1
, (5)

where nj is the number of neurons in the j-th hidden layer.
To maintain the normal distribution in each layer, the weights
of each layer were computed by the random selection with
normal distribution divided by the square root of the number
of samples [16], [22]. Therefore, the initial weights, Wini, can
be calculated based on Xavier:

Wini =
R√
N
, (6)

where R is a random matrix from a normal distribution,
R ∈ RN×u and N is the number of samples in the training
data. Similarly, the bias b can be generated randomly with the
dimensions of u× 1.

It was reported that the range of random selection in
input weights has an impact on the performance in ELM
and ESN [17], [18]—the smaller the range, the better the
performance. The original OS-ELM used weights ∈ −1 . . . 1
in the input weight matrix. Here, we use a smaller range by
scaling them with the following conditions:

W =

{
Wini · wmax, if wmax < 1

Wini · 1
wmax

, if wmax > 1
(7)

where wmax is the maximum value of the elements in |Wini|,
max (|Wini|). Therefore, the random input weight matrix in
OS-ELM was replaced by new weights W.



B. Intrinsic Plasticity

IP is an unsupervised learning rule. It mainly focuses on
seeking the best gain (u) and bias (V) in each IP epoch based
on the sequential training data. Schrauwen et al. successfully
applied IP in ESN [20]. Here, we modified the IP rule and
used it in the OS-ELM sequential learning part to improve
classification.

If the initial gain is u ([(N − c) × 1]) and bias is V
([(N − c)×D]), these two parameters are iteratively updated
by parameters p and Q, computed in equations (8) and (9),
respectively.

p = η/u+Qxi, (8)

Q = −η((−µ/σ2) + a/σ2(2σ2 + 1− a>a+ µa)), (9)

where η is a learning rate, µ represents the mean of sequential
data, σ is the standard deviation of sequential data and a is the
vector that can be computed based on u(i)l−c and v(i)l−c, that is
from the element of u(i) = [u

(i)
1 , u

(i)
2 , . . . , u

(i)
N−c]

> and V(i) =

[v
(i)
1 ,v

(i)
2 , . . . ,v

(i)
N−c]

> in the i-th epoch.

a = g(u
(i)
l−cxl + v

(i)
l−c), (10)

where xl is the l-th sample in the sequential training data,
l = [l − c, . . . , N ].

Therefore, u(i) and V(i) can be updated by equations (11)
and (12), respectively.

u(i) = u(i−1) + p (11)

V(i) = V(i−1) +Q (12)

The algorithm will terminate when (i) the norms of the dif-
ferences between the gains and biases in current and previous
epochs are smaller than a threshold (tol) or (ii) the maximum
epoch nEpoch is reached. In this study, the threshold tol was
defined as 0.1× 10−6 and nEpoch was set to 100.

The gain and bias of IP will be updated based on the
sequential training data. In the sequential part, the updated
u(i) and V(i) will be used in the activation function .

C. OS-ELM based Intrinsic Plasticity with New Weight Selec-
tion

In this subsection, we used the new weight selection method
and IP rule, in our NOS-ELM-IP method. In the implemen-
tation of IP rule into the sequential training part, the input
data of activation function requires to be updated based on
the (l− c)-th element of u(i) and V(i) in the i-th epoch. The
updated input data can be computed by,

xnew = u
(i)
l−cxl + v

(i)
l−c, (13)

where l = [(l − c), . . . , N ], u(i)l−c is the (l − c)-th observation
in u(i), and v(i)l−c is the (l − c)-th row of matrix, V(i). Then,
the hidden layer output matrix based on the new input data
can be calculated using (2). Finally, the output weights can be
computed by (3). Pseudo-code for NOS-ELM-IP is shown in
Algorithm 1.

IV. EXPERIMENT FRAMEWORK

The main aim of this section is to demonstrate the effec-
tiveness of the two new methods, used in OS-ELM, i.e. the
new input weights selection and the intrinsic plasticity rule.

A. Data sets

Tests were run on a set of commonly used benchmarks [23]–
[26], available at UCI Machine Learning Repository [27], and
a real-world data set. The data sets included binary class and
multi-class classification tasks. With the rapid development
of software and hardware, wearable devices become popu-
larization. The increasing number of researchers pay more
attention to human activity recognition. Therefore, we chose
the Human Activities and Postural Transitions’ Recognition
using Smartphone Data (HAPT) [28] as the real-world data set
to be evaluated. It consists of 3-axial linear acceleration (from
the embedded accelerometer) and 3-axial angular velocity
(from the gyroscope) of a smartphone. Details of each data
set are in Table I.

TABLE I
DETAILS OF DATA SETS

Data Set Features Classes Samples

Flare 9 2 144
Breast 9 2 263

Diabetes 8 2 768
Heart 13 2 270

Thyroid 5 2 215
Banana 2 2 5300
Titanic 6 2 714
German 20 2 1000

Iris 4 3 150
Twonorm 20 2 7400

HAPT 561 6 10929

B. Experimental Setting

We compared our models: (i) OS-ELM with Xavier ini-
tialization method (XOS-ELM), (ii) OS-ELM with the new
weight selection approach (NOS-ELM), and (iii) OS-ELM
based IP with the new weight selection approach (NOS-ELM-
IP), with the conventional OS-ELM on the data sets in Table I.
We evaluated performance with five-fold cross-validation on
each of the ten benchmark data sets. The average classifi-
cation error across five-folds was the performance metric.
Since HAPT data set is partitioned into two sets—70% for
the training set and 30% for test sets, we simply reported
performance from the test set.

It was seen that each algorithm had parameters, that needed
to be tuned. We used a simple grid search for each algorithm.
In OS-ELM, the number of hidden neurons u was varied in
the set [10, 20, . . . , 100, 200, . . . , 1000, 2000]. In XOS-
ELM and NOS-ELM, the only parameter is the number of
hidden neurons. Since the input weight selection technique
changed, the suitable number of hidden neurons in this model
also changed. Therefore, we searched parameters in the same
range as those for OS-ELM. In NOS-ELM-IP, we simply set
the number of hidden neurons to be the same as for NOS-ELM



Algorithm 1 Learning Phase of NOS-ELM-IP
Require: Input data matrix, X, the target value, y, initial training size, c, number of training data N , number of hidden

neurons, u, initial u(0) and V(0) set to one, tol = 0.1× 10−6, Gaussian function, g(·), and a = g(u(0)xc + v
(0)).

Ensure: Output weights (β).
Initial Training Part:

1: Calculate initial weights (Wini) by (6); . Xavier initialization method
2: Compute input weights by (7);
3: Calculate initial output weights (β0) by (1);
4: for i ∈ {1, . . . , nEpoch} do . Intrinsic Plasticity Rule
5: for l ∈ {c+ 1, . . . , N} do
6: Calculate the interval parameters p and Q by (8) and (9), respectively;
7: Compute a based on u(i)l−c and v(i)l−c in (10).
8: Update u(i) and V(i) by (11) and (12), respectively;
9: end for

10: if norm(u(i−1) − u(i)) < tol and norm(V(i−1) −V(i)) < tol then
11: Break;
12: end if
13: end for
14: return u(i), V(i)

Sequential Training Part:
15: for l ∈ {c+ 1, . . . , N} do
16: Calculate new input of active function by (13);
17: Calculate hidden matrix by (2), based on new input, xnew;
18: Calculate output weights by (3);
19: end for

and searched for the IP parameter, η, using these values—
[1.0E − 17, 1.5E − 17, . . . , 1.0E − 12]. The initial number of
training data (L0) was set to N

2 . The optimal parameters found
for each model, based on these settings, are listed in Table II.

TABLE II
PARAMETER SETTINGS FOR ALL MODELS

Data set OS-ELM XOS-ELM NOS-ELM NOS-ELM-IP

u u u u η

Flare 30 10 10 10 1.0× 10−13

Breast 40 30 30 30 1.0× 10−14

Diabetes 30 10 10 10 5.0× 10−13

Heart 20 20 20 20 2.0× 10−12

Thyroid 20 20 20 20 1.0× 10−15

Banana 50 20 20 20 1.0× 10−17

Titanic 30 20 20 20 1.0× 10−14

German 30 30 30 30 5.0× 10−12

Iris 10 10 10 10 1.5× 10−13

Twonorm 70 80 30 30 1.0× 10−11

HAPT 1000 500 500 500 1.5× 10−17

V. RESULTS AND DISCUSSION

We ran the experiment 10 times with different random splits,
with the parameters in Table II. We report the mean misclas-
sification rate for the weights selection and IP algorithm as
shown in Table III and IV, respectively.

We first compared the performance of the new weight
selection model, NOS-ELM, with OS-ELM and XOS-ELM.
The new weight selection method clearly improved clas-
sification performance on all data sets. For all data sets,

the misclassification rate in NOS-ELM reduced by 1.98%
compared to OS-ELM and 0.13% compared to XOS-ELM.
For NOS-ELM compared with OS-ELM, the maximum benefit
appeared in the iris data set at 4.8%, while the minimum was
in the Twonorm set at 0.06%. On the other hand, comparing
the performance of the proposed model with XOS-ELM, the
maximum improvement of NOS-ELM appeared in the Banana
data set (0.4%), but there was no improvement in the Twonorm
data set. Besides, the average value of the standard deviation
of misclassification rate for all data sets was 1.3% in NOS-
ELM, or less than that for OS-ELM (0.6%) and XOS-ELM
(0.3%). This confirmed that our new weight selection method
enhanced the model robustness.

Furthermore, the IP rule enhanced performance—see Ta-
ble IV, which shows the difference in the misclassification
rate of NOS-ELM and NOS-ELM-IP. There was no change
in performance for NOS-ELM vs NOS-ELM-IP in Flare,
Breast, Thyroid and Twonorm data sets, but NOS-ELM-IP
showed improvements in the others. Overall, NOS-ELM-IP
was comparable or yielded better performance than NOS-
ELM.

For example, the highest improvement appeared in HAPT
as the misclassification rate reduced by 1.6%, while the lowest
appeared in the German data that reduced by 0.01%. Using
the IP rules in NOS-ELM improved overall performance by
∼ 0.17%. There was no difference in the average standard de-
viation of misclassification rate between NOS-ELM and NOS-
ELM-IP. Thus NOS-ELM-IP performed better than NOS-ELM
in both binary and multi-class classification.



We used the “Wilcoxon Signed Rank Test” [29] to confirm
that NOS-ELM-IP was better than NOS-ELM. Table IV shows
the differences between the misclassification rates of NOS-
ELM and NOS-ELM-IP. Then, the absolute differences were
ranked in ascending order—see the last column. Candidates
with no difference were given rank 0. Next, we calculated
the sum of ranks for the positive difference R+ and negative
difference R−, leading to R+ = 28 and R− = 0. Hence,
Wstat = 0—Wstat ≤ 10 implied that the difference was sta-
tistically significant, confirming that NOS-ELM-IP performed
better than NOS-ELM.

TABLE III
MEAN MISCLASSIFICATION RATE (%) FOR THE NEW ALGORITHMS,

NOS-ELM AND XOS-ELM vs OS-ELM. BOLDED FIGURES MARK THE
BEST PERFORMANCE.

Data set Misclassification Rate (%)

OS-ELM XOS-ELM NOS-ELM

Flare 40.51 ± 2.6 37.74 ± 1.2 37.67 ± 1.1
Breast 28.78 ± 1.9 27.41 ± 1.2 27.25 ± 0.9

Diabetes 24.75 ± 1.0 23.05 ± 0.5 23.01 ± 0.4
Heart 19.22 ± 1.6 17.62 ± 1.2 17.37 ± 1.1

Thyroid 11.25 ± 3.0 9.53 ± 1.6 9.41 ± 1.6
Banana 42.96 ± 7.2 39.73 ± 8.1 39.34 ± 6.3
Titanic 19.67 ± 0.8 19.57 ± 0.8 19.49 ± 0.8
German 25.28 ± 0.5 25.04 ± 0.5 25.03 ± 0.6

Iris 12.40 ± 1.6 7.66 ± 1.8 7.60 ± 1.7
Twonorm 2.31 ± 0.1 2.25 ± 0.0 2.25 ± 0.0

HAPT 8.54 ± 0.3 5.67 ± 0.4 5.44 ± 0.2

Average 21.4 ± 1.9 19.57 ± 1.6 19.44 ± 1.3

TABLE IV
COMPARISON OF MEAN MISCLASSIFICATION RATE (%) FOR THE

PROPOSED ALGORITHM, NOS-ELM AND NOS-ELM-IP.

Data set Misclassification Rate Difference Rank
NOS-ELM NOS-ELM-IP

Flare 37.67 ± 1.1 37.67 ± 1.1 0.00 0
Breast 27.25 ± 0.9 27.25 ± 0.9 0.00 0

Diabetes 23.01 ± 0.4 22.99 ± 0.4 0.02 2
Heart 17.37 ± 1.1 17.25 ± 1.1 0.12 6

Thyroid 9.44 ± 1.6 9.44 ± 1.6 0.00 0
Banana 39.34 ± 6.3 39.26 ± 6.4 0.08 5
Titanic 19.49 ± 0.8 19.46 ± 0.8 0.03 3
German 25.03 ± 0.6 25.02 ± 0.5 0.01 1

Iris 7.60 ± 1.7 7.53 ± 1.7 0.07 4
Twonorm 2.25 ± 0.1 2.25 ± 0.1 0.00 0

HAPT 5.44 ± 0.2 3.83 ± 0.2 1.61 7

Average 19.44 ± 1.3 19.27 ± 1.3 0.17

VI. CONCLUSION

We described a new model, NOS-ELM-IP, that used an
improved method to select the input weights, instead of the
random selection in the original OS-ELM. Adding the IP
rule assisted in updating the best gain and bias, that are
based on sequential data and used them in the activation
function. Experiments showed that OS-ELM in conjunction
with the new weight selection and IP rules enhanced overall

performance on benchmark data sets. Moreover, the proposed
model is more robust than the others. The new model also
achieved better performance in the human activity data set
than the baselines. Overall, our new NOS-ELM-IP model was
the best performer in binary and multi-class classification tasks
over a wide range of tested data sets.
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