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ABSTRACT 
Effective treatments extend lives in the world, and significant efforts are in place to expand the use 
of life-saving medications in the developing world. This paper gives an overview of drug discovery 
process and emphasises in the area of virtual screening. Because machine learning is fast becoming a 
popular mechanism to support activity recognition in drug discovery process and other real-world 
applications, hence, this review emphasises on machine learning methods used in virtual screening. 
This includes linear and kernel discriminant analysis, neural network, decision tree, graph kernel 
machines, and support vector machine.  

Index Terms – drug discovery; chemoinformatics; virtual screening; machine learning

1. Introduction 
The greatest accomplishments in mankind, 
arguably, so far has been in the field of 
medicine and fighting disease. One of the public 
health’s greatest achievements is the 
eradication of smallpox which was discovered 
by Edward Jenner in the late 18th century [1]. He 
made use of cow-pox virus to build immunity 
against the deadly scourge of smallpox [2]. He 
invented the term “vaccination” for his 
treatment from the Latin word “vacca”– a cow. 
The vaccination was adopted by Louis Pasteur 
for immunisation against any diseases later on 
[2]. The other greatest achievement is a 
discovery of Penicillin by Alexander Flemming in 
1929 [3]. His observation that a fungal 

contaminant had wiped out a bacterial colony 
resulted in Penicillin, which has subsequently 
saved a millions of lives and limbs: more people 
died in battle than from infection in World War 
II, for the first time in any war [4]. 

People have used drugs for as long as they 
have tried to relieve the pain. Drugs are 
supposed to cure disease or improve health but 
they are also able to damage it, e.g. cocaine, 
amphetamines, heroin. Drugs are molecules that 
work by interacting with others in the body [5]. 
The human body consists of around a hundred 
trillion cells. Cells extract energy from food and 
oxygen to grow and divide, and also to send 
signals to other cells within the body by the use 
of protein. Drugs are able to influence the 
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function of cells by affecting one or more 
different proteins effecting growth, division, 
metabolism and routine signalling. A cell 
controls the function of its proteins by other 
molecules. The signaling molecules can be 
other proteins, protein derived molecules, etc. 
These signaling molecules and protein targets 
have unique shape which allows them to fit 
together. A drug can mimic a signalling molecule 
if its shape is similar enough to one. Once the 
drug fits into the drug’s target, it can either 
activate or block its target. 

[5] gives a concrete example of how drugs 
treat a failing heart. The heart beats very fast, 
during its failure, to compensate for its 
inefficient pumping. Thus the heart rate needs 
to be slowed down in order to reduce damage. 
An important signalling molecule, “adrenaline”is 
able to bind to a protein found in heart cells, 
beta-adrenergic receptor. When they are bind 
together, the heart will beat faster. Hence, if a 
drug has a similar enough shape to adrenaline, it 
would fit into a receptor. If it has a very similar 
shape to adrenaline, it would activate the 
receptor just like adrenaline does. However, if its 
shape is similar and yet somewhat different than 
adrenaline, it would fit into receptor and not 
activate it. This leads to a slowing of the heart 
rate.  

Drug discovery is a very complex task and 
time consuming with a recent estimate by the 
Tufts Centre for Drug Development [6] 
suggesting that it takes 12–15 years to develop a 
drug at a cost of 803 million dollars. 

The process of developing a drug starts from 
sample collection and selection of targets for 
drugs. High-throughput technologies e.g. high-
throughput screening and combinatorial 
chemistry are then used (see section 3 for more 
details), followed by lead optimisation. The 
purpose of lead optimisation is to optimise the 
molecules or compounds which demonstrate 
the potential to be transformed into drugs, 
retaining only a small number for the next 
stages. It can be done by e.g. in silico (on 
computer) modelling [7], X-ray crystallography 
[8]. A set of selected compounds is then tested 
both in vitro (within the glass) and in vivo (within 
the living) in the preclinical testing stage. The 
testing is usually conducted using animals e.g. 
mice. Mice are widely used in research because 
humans share approximately 99% of genes with 
mice [9]. At this stage, a set of selected 
compounds is reduced to only 5–10 compounds 
that are relevant enough to test on humans in 
the clinical testing stage before a drug is 
launched on to the market. Figure 1 shows the 
process of developing a drug. The diagram is 
developed from [10] and [11]. 

2.  CHEMOINFORMATICS 
Chemoinformatics is the use of computer and 
informational techniques to tackle chemical 
problems which emphasise the manipulation of 
chemical structural information [7]. Because 
chemoinformatics is quite new, there is no 
universal agreement on the correct spelling. It is 
also known as cheminformatics, 
chemiinformatics, and chemical informatics. 
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The term was first defined by [12] as “the 
mixing of information resources to transform 
data into information, and information into 
knowledge, for the intended purpose of making 
better decisions faster in the arena of drug lead 
identification and optimisation” [12]. In fact, 
chemoinformatics is simply a new name, it is not 
a new discipline [13].  

Many techniques used in chemoinformatics 
have been well-documented and reviewed in 
many text books i.e. [7, 14, 15]. They are used in 
pharmaceutical companies in the process of 
drug discovery such as virtual screening and 
quantitative structure-activity relationship 
(QSAR). 

An important characteristic of the techniques 
in chemoinformatics is that it must be 
applicable to a huge amount of data and 
information (number of molecules) [7]. The data 
can only be processed and analysed by 
computer methods which also depend on 
computational power.  

This paper emphasises virtual screening 
techniques which are explained in the following 
section.   

3. VIRTUAL SCREENING 
In the twentieth century mankind has obtained 
the ability to discover highly active, yet small, 
organic molecules which are used for treatment 
purposes. Combining synthetic organic chemistry 

and information from clinical chemistry enables 
us to develop the powerful medicines available 
today. However, medicinal chemists have always 
struggled with the selection of which 
compounds to synthesise : a chemist has to 
choose the compounds to be synthesised from 
among millions of possible molecules. 

New technologies, the so-called 
“combinatorial synthesis”and “high-throughput 
screening” have been introduced because, in 
the past, a few hundreds of compounds could 
be synthesized by one chemist in a year [16]. 
Potential drug compounds were normally 
obtained from natural products or from scientific 
literature on known compounds. Combinatorial 
synthesis offers a much broader range of 
possibilities. It leads to an increase in the 
number of compounds in the pharmaceutical 
company screening libraries into the millions. 
Analysis of a specific biological activity for an 
entire screening library can be done by 
highthroughput screening in a matter of days. In 
order to control costs, time and waste, the 
computational chemist is encouraged to 
develop some kind of computer programme 
capable of automatically evaluating very large 
libraries of compounds and integrate it into the 
drug discovery process. This is called “virtual 
screening” (VS). 

VS is a set of computational methods or in 
silico analogues of biological screening. The aim  
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Figure1. Drug discovery process.

of VS is to score, rank and/or filter a set of 
chemical structures using one or more 
computational procedures in order to ensure 
those molecules with the largest prior 
probabilities of activity are assayed first in a 
“lead discovery programme”[16, 15, 7]. [17] 
grouped VS methods into four main classes 
based on the amount of structural and 
bioactivity data available, as follows: 
1) If just a single active molecule is available, 

then similarity searching can be used. 

2) If several active molecules are known, it is 
possible to define what is known as a 
common 3D pharmacophore leading to a 3D 
database search. 

3) Machine learning methods should be used 
for VS only if it is not possible to identify a 
common pharmacophore and there is a 
sufficient number of active and inactive 
molecules available. They can be used to 
derive a structureactivity relationship from 
the known active molecules for use in 
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predicting biological activity. An example of 
machine learning for virtual screening is 
shown in figure 2. 

4) A docking study can be employed if the 3D 
structure of the biological target is known. It 
involves the prediction of the binding mode 
of individual molecules. It aims to identify 
the orientation that is closest in geometry to 
the observed structure.  

 
Figure 2. An example of machine learning for 
virtual screening. 

4.  TECHNIQUES IN VIRTUAL 
SCREENING 

VS can be divided into two distinct categories: 
ligand-based VS and structure-based VS [7]. A 
ligand is a molecule that is able to bind to and 
form a complex with a biomolecule to serve a 
biological purpose. Ligand-based VS involves 
using information available from a single or set 
of compounds which have been identified as 
potential leads. A lead compound is a 
compound that exhibits pharmacological 
properties which suggest its value as a starting 
point for drug development. Ligand-based VS is 
conducted by identifying molecules that share 
some similarity or properties with the 
single/multiple active molecules. It aims to 
score database molecules based on their overall 
shape similarity to query molecules. Examples 

of ligand-based VS are substructure/similarity 
searching, pharmacophore-based designs, and 
machine learning techniques, which correspond 
to the first, second, and third class of VS 
methods grouped by [17] respectively (see 
section 3). An example workflow for ligand-
based VS is shown in figure 3. Structure-based 
VS can be implemented if the 3D shape binding 
of the biological target is known. An example of 
structure-based VS is docking – the fourth class 
of VS [17]. 

The scope of this review focuses on 
techniques which have been developed for VS – 
in particular machine learning techniques. The 
section is organised as follows. Sections 4.1 and 
4.2 presents an overview of similarity-based VS 
and pharmacophore-based designs, respectively. 
Section 4.3 reviews machine learning techniques 
used in VS followed by the docking method in 
section 4.4. 

 
Figure 3. An example work flow for ligand-based 
VS.  

4.1. Similarity-Based Virtual Screening 

4.1.1. Similarity Searching 

Similarity searching is used for finding those 
compounds which are most similar to a query 
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compound in a database. This involves 
comparing the query compound with every 
compound in the database in turn and returns a 
ranked list of all the compounds that are judged 
to be similar to the query. Similarity searching in 
chemical databases was first introduced in the 
mid-1980s [18, 19]. Many methods have been 
developed such as RASCAL [20], and LINGO [21], 
involving various descriptors and similarity 
coefficients. The rationale for similarity searching 
is the “similar property principal” which states 
that structurally similar molecules will exhibit 
similar properties and biological activity [22]. 
Recently, [23] conducted an experiment on the 
Daylight fingerprint [24]. Their experiment shows 
that compounds with similarity values higher 
than a threshold (0.85 using Tanimoto 
coefficient) for shared biological activity have 
only 30% chance of shared biological activity. 
This is lower than the one that was later 
accepted by computational chemists [23], 
emphasising that similarity searching is 
probabilistic in nature, hence, perfect results 
cannot be expected. 

The most commonly used similarity method 
is based on 2D fingerprints and there are 
numerous studies and reviews of similarity 
coefficients [25, 26]. Similarity coefficients can 
be classified into three major classes namely: 
association coefficients, correlation coefficients, 
and distance coefficients [26]. [27] investigated 
36 similarity coefficients and found that the so-
called Tanimoto coefficient performed best in 
similarity search. 

Apart from 2D fingerprint-based methods, 
similarity matching is also used for graphical 
descriptors. One algorithm that can compare 
objects represented as a graph is the Maximum 
Common Subgraph (MCS). The MCS is the largest 
set of atoms and bonds in common between 
two structures. The problem of identification of 

the MCS in two graphs is NP-Complete1
 [7]. A 

number of exact and inexact methods have 
been introduced for the MCS problem [28]. [29] 
first applied MCS matching to database 
searching by using a two-stage approach: 
determine an upper-bound on the size of the 
MCS by using fragment-based search, and then 
use MCS calculation only on those molecules 
above a given threshold [29]. Recently, a new 
algorithm the so called “RASCAL”(Rapid 
Similarity CALculation) which is based on exact 
graph matching has been introduced [20]. This 
algorithm is able to perform tens of thousands 
of comparisons in a very short time. 

[30] evaluated both graph-based and 
fingerprint-based measures of structural 
similarity. The results show that, in VS, there is 
no statistically significant difference in the 
number of active molecules retrieved by graph-
based and fingerprint-based approaches. 

However, graph-based approaches provide 
an effective complement to the fingerprint-
based approach. They suggest that there is a 
way in which these two approaches could be 
combined: first, generate the initial output 

                                                 
1

The most difficult problem in NP (non-deterministic  
polynomial time). They are the smallest subclass of NP which 
remains output P. 
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ranking using similarity matching, then use 
RASCAL to visualise the similarities between the 
target structure and the nearest neighbours from 
that ranking. The results show that only 4% of 
the fused hit-lists contained fewer actives than 
either of the original hit-lists. 

Another type of similarity search system is 
text-based molecular description. Recently, [21] 

introduced a new algorithm into QSAR2
 model, 

LINGO, based on the fragmentation of SMILES 
strings into overlapping substrings of a defined 
size. SMILES is a way to represent a molecule 
through the use of a linear notation. SMILES 
stands for Simplified Molecular Input Line Entry 
Specification. SMILES strings are the most 
compact text-based molecular representations. 
They contain most of the information that is 
needed for computing all kinds of molecular 
structures. The following year, [31] applied 
LINGO to VS tasks by integrating LINGO into a 
pseudo-evolutionary algorithm. The results show 
nearly 10 times better performance than a 
random search. 

4.1.2. Data Fusion 

Data fusion is defined as the use of techniques 
that combine data from multiple sources in 
order to improve on individual results. It was 
first applied to the similarity searching of 
chemical compounds by [32]. The fusion of 
similarity measures offers a more consistent 

                                                 
2 They represent an attempt to correlate structural or property 
descriptors of compounds with specific biological activity 
targets. There are many types of possible model e.g. 
mathematical and statistical. 

level of searching performance than just a single 
measure. There are many different rules by 
which two or more similarity measures can be 
combined, e.g. SUM, MAX, and MIN. These are 
based on those identified by [33]. The SUM 
method scores each molecule by using an 
average rank position from each similarity 
measure. While the MAX and MIN methods 
score each molecule by using the maximum and 
minimum rank position obtained from the 
different measures.  

A set of 22 similarity coefficients was divided 
into 13 groups by using the Mojena stopping 
rule [34], while in a previous study, it was 
divided into 11 groups [35]. The 13 groups fusion 
was tested on the retrieval of bioactive 

molecules from the NCI AIDS database3, the 

IDAlert database4, and the MDL Drug Data 

Report (MDDR) database [36]. The results show 
that applying data fusion to the similarity 
coefficients improves search performance with 
little extra computational cost. The optimum 
numbers of coefficients to use in data fusion has 
been found, in practice, to be between two and 
four, with improvement diminishing at five or 
more. However, there is no single combination 
which produces a consistently high performance 

                                                 
3  The NCI AIDS database is available from NCI/NIH 
Development Therapeutics Programme at URL 
http://dtp.nci.nih.gov. It contains information on selected 
compounds found to be active in the National  Cancer 
Institute’s AIDS antiviral screen. 
4 The IDAlert database is available from Current Drugs Limited 
at URL http://www.current-drugs.com. It contains 11,607 
biological activity structures which have been reported in the 
literature during 1992-96. 
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across all types of activity classes5
 in the 

databases. 
Data fusion is also the basis for the 

consensus scoring approach used in protein-
ligand docking [7]. Consensus scoring combines 
multiple scoring functions and leads to higher 
hit-rates in VS. For consensus scoring there are 
three strategies to rank molecules according to 
the predicted results, namely rank-by-number, 
rank-by-rank, and rank-by-vote [37]. In rank-by-
number all molecules are ranked according to 
the average predicted values given by all the 
scoring functions. All the molecules are ranked 
according to the average ranks predicted by all 
scoring functions in rank-by-rank. If a molecule is 
predicted to be on the top, e.g. 5%, for each 
scoring function, then it is given a vote. The final 
score of each molecule is the sum of votes 
received from all scoring functions. This is called 
rank-by-vote. 

It was found that consensus scoring can 
dramatically reduce false positive predictions 
[38]. Moreover, only three or four scoring 
functions are sufficient for consensus scoring 
[37]. Among the three strategies described 
above, rank-by-number and rank-by-rank work 
more effectively than rank-by-vote. This has 
been shown in an extensive study in [37].  

[39] combined consensus scoring with the 
Näive Bayes classifier in order to improve 

                                                 
5 An activity class is defined as a specific biological activity 
target. 

enrichment6  of high-throughput docking results. 

In this study, rank-by-median was introduced 
and found to be more effective than rank-by-
mean and rank-by-vote. In rank-by-median all 
molecules are ranked according to the median 
of predicted values given by all the scoring 
functions. Using the rank-by-median with Näive 
Bayes classification is robust enough to ensure 
maximum enrichment [39]. 

4.2. Pharmacophore-Based Designs 

In the early 1900s, a pharmacophore was first 
defined by Paul Ehrlich as “a molecular 
framework that carries (phoros) the essential 
features responsible for a drug’s (pharmacon) 
biological activity” [40]. The definition was 
updated by Peter Gund in 1977 as “a set of 
structural features in a molecule that is 
recognised at a receptor site and is responsible 
for that molecule’s biological activity” [40]. 
Recently an International Union of Pure and 
Applied Chemistry working party elaborated the 
definition as “the ensemble of steric and 
electronic features that is necessary to ensure 
the optimal supramolecular interactions with a 
specific biological target structure and to trigger 
(or to block) its biological response” [41]. 
Pharmacophores are used to define the 
essential features (with 3D arrangement) of one 
or more molecules with the same biological 
activity in computational chemistry. The initial 

                                                 
6 Enrichment is defined as the curve depicting number of 
actives retrieved experimentally versus number of samples 
retrieved by random search. 
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studies focused on rigid 3D structures within 
each molecule in a database being represented 
by a single and low-energy conformation. A 
pharmacophore search is likely to miss large 
numbers of matching molecules that can adopt 
a conformation containing the query pattern but 
that are represented in the database by a low-
energy conformation that does not contain this 
pattern. This is because it takes no account of 
the flexibility that characterises many 
molecules. Hence, some approaches have been 
introduced in [42] to flexible 3D searching. 

Many pharmacophore algorithms have been 
developed, e.g. DISCO (DIStance Comparison) 
[43] makes use of graph matching algorithm – 
MCS algorithm, and GASP (Genetic Algorithm 
Superimposition Program) [44] uses a genetic 
algorithm to identify possible pharmacophore 
models from small sets of active compounds 
(typically 2–5 compounds). 

The use of pharmacophores is reflected in 
the large amount of literature. A number of 
textbooks dedicated to pharmacophores have 
been published e.g. [40, 45] 

4.3. Machine Learning Techniques 

Machine learning involves the design and 
development of algorithms and techniques in 
order to allow computers to learn and 
understand data. Machine learning research 
focuses on extracting the relationship from 
available data by computational and statistical 
methods. There are many reasons why 
engineers need to identify or model complex 
relationships e.g. understanding the world, 

predicting the future, classification, decision 
support and control. A machine learns when it 
changes its structure or data based on its input, 
hence, broadly say, performance of the machine 
is expected to be improved, assuming that data 
are plentiful. 

4.3.1. Substructural Analysis 

Substructural analysis is the first machine 
learning method used in chemoinformatics [46]. 
It is a class of QSAR techniques which assume 
that a defined molecular fragment gives a 
constant contribution to an activity. It aims to 
assign a weight for each substructural fragment 
which reflects its possibility of being active or 
inactive. A score for each unknown compound 
can be calculated from the sum of the weights 
of all of the fragments contained within a 
molecule. Unknown compounds are then 
ranked, based on the calculated scores, in 
decreasing probability of activity. 

Many fragment weighting schemes have 
been proposed and compared [47]. 
Substructural analysis was neglected for many 
years but is subject to renewed interest [48, 49]. 
One of the reasons is that the weighting 
schemes used in substructural analysis are very 
similar to those used in Näive Bayesian classifiers 
one of the most widely use machine learning 
techniques [50]. 

4.3.2. Linear Discriminant Analysis 

Here, linear discriminant analysis (LDA) aims to 
separate molecules into defined classes. The 
simplest type of LDA is the binary classification 
problem. It finds the linear combination of 
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features and draws the hyperplane which best 
separates the data. It was first applied to a set 
of biologically active molecules by [51]. Their 
study involves a relatively small dataset 
containing only 20 compounds with general 
structure of the aminotetralins and aminoindans. 

Recently, [52] performed VS based on LDA 
to identify new lead trypanothione reductase 
inhibitor compounds. The database is 
represented by 2D and 3D descriptors which are 
then combined together in order to capture 
complementary information. They used 58 
compounds for training set and 422,367 
compounds for test set. The experiment shows 
good results with 91.38% and 88.63% for training 
and test set, respectively. More applications of 
LDA to VS are described in [53] and [54]. 

4.3.3. Neural Networks 

Neural networks (NNs) are a type of artificial 
intelligence that attempt to mimic the way a 
human brain works. They work by creating 
connections between artificial neurons which 
are arranged in layers and associated with 
weights. The weights are initially set to random 
values. The NN must first be trained in order to 
adjust the weights by using a known set of 

inputs and corresponding set of outputs7.  

NNs are trained repeatedly until they can 
obtain the chosen performance criterion for the 
training set. Once a NN has been trained and 
validated, it can be used to predict activity for 
unknown molecules. NNs are a common 

                                                 
7 The outputs are needed for supervised learning. 

working tool for problem solving in 
computational chemistry [55, 15, 56, 57, 58]. 
Feed-forward networks and the Kohonen 
network are the two most commonly used NN 
architectures in chemistry [7]. Feed-forward 
networks use a supervised learning method 
which derives the model by using the values of 
the dependent variables, while the Kohonen 
network is unsupervised. 

One problem with the use of NNs is 
overtraining. They can give outstanding results 
on the training set, however, when used with 
unknown data, they can give poor predictions 
because the training data were effectively 
memorised by the network. In order to address 
this problem, M-fold cross-validation is used. 

4.3.4. Decision Trees 

Decision trees consist of a set of rules which can 
associate specific molecular features with an 
activity or property of interest. A decision tree 
represents a Boolean function and is described 
as a tree-like structure. Each node corresponds 
to a specific rule. Once decision trees have been 
trained from a training set, an unknown sample 
can be classified by starting at the root node 
then following the edge appropriate to the rule. 
This is repeated until a terminal node is 
reached. This approach allows easy 
determination of the most relevant chemical 
features to the target biological property [59]. 
Various methods are available to construct 
decision trees such as ID3 [60], C4.5 [61, 62], and 
C5.0 [61]. 

Applications of decision trees to drug 
discovery are addressed in [7]. Recently, [63] 
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compared seven different classification methods 
on the selection of active molecules for five 
different target protein problems. The 
experiment shows that decision trees slightly 
outperform only Näive Bayesian classifier but 
other methods e.g. support vector machines, 
NNs achieve better accuracy than decision trees. 

4.3.5. Support Vector Machine 

The support vector machine (SVM) is a more 
recent example of a powerful machine learning 
algorithm for solving chemical classification 
problems [64, 65, 66, 67]. It is a supervised 
learning algorithm first introduced by [68]. It uses 
a linear decision boundary to discriminate 
between two classes. The extension of the SVM 
to multi-class classification, regression, and 
probability density estimation also exists.  

A training data set which consists of two 
classes is represented by an m-length binary 
fingerprint. The SVM works by implicitly mapping 
the training data set into an N-dimensional 
feature space (N > m) by the so-called kernel 
function. Then it identifies a large-margin 
hyperplane which separates the two classes of 
data. Once the machine has been trained and 
validated, it can be used to discriminate 
unknown data.  

The SVM in conjunction with Fisher kernel 
was successfully applied to protein classification 
by [69]. They begin by training a generative 

hidden Markov model8 (HMM) in order to model 

a given protein family. This maps all protein 
sequences to points in a Euclidean feature 

                                                 
8 HMM is a way of extracting features from protein sequences. 

space of fixed dimension. The SVM, in 
conjunction with the Fisher kernel is then used 
for protein classification. 

In a study by [66], an SVM is compared with 
NN on a large benchmark dataset containing 
atomic descriptors of compounds that are drugs 
or nondrugs. They found that SVM (20% error 
rate) is only slightly better than a simple NN 
(20.75% error rate). 

[65] suggest that a careful model selection 
procedure can improve dramatically upon 
existing results. They are able to improve on the 
result of [66] and reduce the error rate to 18.1% 
by taking a careful approach to model selection. 
In the study of [65], the SVM is compared with 
other modern classifiers. After careful model 
selection, a blind test is used. By testing the 
selected learning machines on unseen data, the 
SVM with polynomial kernel of degree p = 11 

and with RBF kernel with  = 5 yielded error 
rates of 7.1% and 6.9%, respectively. 

A serious problem with the SVM in 
conjunction with the Fisher kernel is its 
computational expense. The cost of computing 
each kernel entry over strings is O(m2) in the 
length of the input sequence. [67] introduced 
the SVM in conjunction with a string kernel 
(spectrum kernel) for the protein classification 
problem which allows linear time classification 
with complexity O(km) to compute each kernel 
entry, where k is a length of spectrum of the 
input sequence. They suggest that the SVM in 
conjunction with a string-based kernel could 
offer a simple, effective and computationally 



KMITL Information Technology Journal (Jan. – Jun. 2012)                                              [ Online | http://journal.it.kmitl.ac.th ] 

efficient alternative to other methods of protein 
classification. 

[70] applied SVM to a heterogeneous 
(sometimes called diverse) set of active 
compounds. Heterogeneous defines diversity 
among substructures of molecules in a 
database. In other words, molecules in database 
are not alike. Their experiments show that the 
SVM is more effective than binary fingerprint-
based ranking methods e.g. binary kernel 
discrimination. Moreover, they also improved 
the performance of VS by combining the results 
of the SVM and binary kernel discrimination 
using data fusion techniques. SVM calculated 
scores for 25,300 test molecules in 15 seconds 
while binary kernel discrimination spent 
approximately two minutes. 

Probabilistic SVM [71] in conjunction with the 
ECFP_4 fingerprint [72] was applied to construct 
a drug-likeness filter for molecules [73]. They 
compared their results with previous published 
results by [66]. They are able to reduce the error 
rate to 7.27%. 

SVM now plays a role in VS tasks and there is 
a growing literature on SVMs in VS e.g. [74, 75, 
76, 77, 78, 79, 62]. 

4.3.6. (Binary/Continuous) Kernel Discrimination 

Binary kernel discrimination (BKD) is a machine 
learning classification tool that has been 
successfully applied to VS tasks. [80] introduced 
a multivariate binomial distribution into the 
methods of kernel density estimation (KDE) [81]. 
BKD was first applied in chemoinformatics by 
[82]. KDE is a nonparametric method and so 

makes no assumptions about the frequency 
distributions of the variables being assessed [83]. 
The aim of KDE is to estimate the true 
probability density function of a given sampled 
data. In BKD, KDE is used to estimate the 
distribution of a sample of molecules from a 
training set in order to describe the physical or 
structural properties of molecules in some 
multidimensional descriptor space such as 2D 
fingerprints. The approach used in BKD is the 
Parzen windows approach. 

KDE can be chosen to estimate the 
likelihood of active or inactive molecules 
separately. It is convenient that the kernel 
function is itself a density probability mass 
function but not necessary when only the 
likelihood ratio is required. Hence, for active 
molecule selection purposes, a scoring function, 
is calculated from the likelihood ratio of the 
estimated distributions of active and inactive 
molecules which are estimated by Parzen 
windows. The higher the score, the more likely a 
molecule is to be active. 

[83] compared BKD with merged similarity 
search and feedforward NNs. BKD can perform 
robustly with varying quantities of training data 
and also in the presence of noisy and sparse 
data. BKD was compared to other ranking 
methods for VS: similarity methods, trend 
vectors, substructural analysis and bioactivity 
profiles by [17]. These methods were tested on 
the NCI AIDS database and the Syngenta 
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corporate database9. The study found that BKD 

yielded consistently superior rankings and would 
appear to have considerable potential for 
chemical screening applications. 

[84] investigated three different ways of 
carrying out VS when multiple bioactive 
reference structures are available. 
1) Merging the individual fingerprints into a 

single combined fingerprint. 
2) Applying data fusion to the similarity rankings 

resulting from individual similarity search. 
3) Approximations to substructural analysis. The 

experiment used the MDDR database, [84] 
suggested that fused similarity scores are the 
most effective general approach with the 
best individual results coming from the BKD 
technique. 
The study of the BKD method was extended 

with a comparison of a range of different types 
of 2D fingerprints [85]. The experiment showed 
that the ECFP_4 fingerprint [72] should be 
considered as a first choice as it can achieve a 
better overall performance. 

Author’s previous work [86] compare BKD, 
kernel Fisher discriminant analysis, kernel logistic 
regression, and their variants together. The 
results show that BKD in conjunction of 
Jaccard/Tanimoto performs the best in both 
homogeneous and heterogeneous classes. 
Moreover, BKD does not provide sparse 
solutions. This is important as the speed of 
recall is an important issue in VS tasks. The 

                                                 
9  The Syngenta corporate database contains 132,784 
molecules which have been tested in various in vivo whole 
organism screens. 

results show that sparse classifiers are 
competitive to the modification of BKD in most 
homogeneous classes, on the other hand, they 
are generally worse in most heterogeneous 
classes. This is because a sparse solution might 
lose some significant information in Gram matrix 
in heterogeneous classes. 

Recently, [87] introduced the continuous 
kernel discrimination (CKD) which is based on 
the idea of original Parzen windows [81]. 
Gaussian radial basis function (GRBF) was used as 
the kernel function which is suitable for binary, 
integer, and real-valued representation of 
molecule structure. Their method was applied 
to 11 activity classes and 8 most diverse activity 
classes from the MDDR database. The database 
is represented as three non-binary descriptors 
and one binary descriptor The first type of non-
binary descriptor was generated with the 
SciTegic Pipeline Pilot software [88] and contains 
integer and real values. The second descriptor, a 
997-element integer vector, was generated with 
SYBYL holograms [89], and the third by 
Molconn-Z descriptors [90], a set of topological 
indices of molecular structure that have been 
used extensively for QSAR. The binary descriptor 
used is the ECFP_4 fingerprint. Their results 
show that the ECFP_4 fingerprint is the best 
fingerprint followed by holograms, Pipeline Pilot, 
and Molconn - Z representations. They 
compared CKD with BKD, the average active 
molecules retrieved by BKD is 79.7% while CKD 
achieves 78.1%. Thus, CKD is competitive to BKD 
as differences are not great. More recent work 
on CKD can be found from [91]. 
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4.3.7. Graph Kernel Machines 

As mentioned previously, the alternative 
representations of molecules are 2D or 3D 
graphs representations. Usually chemical 
structures are represented as molecular graph 
[7]. They are considered to be graphs in 
mathematical terms. Graphs consist of nodes 
and edges. In chemical analogy, nodes 
correspond to atoms, and edges are bonds. 
Graph theory is a well researched area of 
mathematics with applications in a wide range 
of disciplines.  

Recently, [92], and [93] introduced positive 
definite kernels between labelled graphs which 
are based on the detection of common 
fragments between different graphs. However, 
these graph kernels are faced with two main 
problems: (i) the problem of computational 
complexity which is in proportion to the product 
of the size of two compared graphs, and (ii) the 
use of all fragments to characterize each graph 
might not be optimal because many fragments 
are irrelevant as they are represented by 

tottering paths10 on the graph.  

To address the above issues and enhance 
predictive accuracy, [94] proposed two 
extensions of the original graph kernel. The first 
extension is to re-label each vertex 
automatically in order to insert information 
about the environment of each vertex in its 
label. The second extension is to modify the 
random walk model which is proposed by [93]. 

                                                 
10 The path immediately returns to a visited vertex after 
leaving it. 

These two modifications are used in conjunction 
with the SVM. Their experiments were 
conducted on two mutagenicity datasets [95, 
96]. Their results show an improvement on area 
under receiver operating characteristic curve of 
the predictions and computation times. They 
compared their proposed algorithm with linear 
regression, decision tree, NNs, and inductive 
logic programming on a mutagenicity dataset 
[95]. They used leave-one-out cross-validation 
to perform their algorithm. It can achieve an 
accuracy of 88.1% which outperforms other 
compared methods.  

[97] reviewed the literature on graph kernels 
and also introduce three new kernel functions 
to use with graphs namely: Tanimoto, MinMax, 
and Hybrid. These kernel functions are applied 
to three classification problems. Their results are 
at least comparable with or often better than 
previous results. The proposed method can 
achieve accuracy of 91.5% on the mutagenicity 
dataset [95], 65-67% on the Predictive 
Toxicology Challenge dataset [98], and 72% on 

the NCI Cancer Cell Lines dataset11.  

4.4. Docking 

Docking aims to predict the 3D structure formed 
when one or more molecules form an 
intermolecular complex (fitting a molecule into 
a  protein).   Figure 4  shows   an   example   of 

                                                 
11  The NCI Cancer Cell Lines database is available from 
NCI/NIH Development Therapeutics Programme at URL 
http://dtp.nci.nih.gov/docs/misc/common_files/cell_list.html. It 
contains screening results for the ability of roughly 70,000 
compounds to kill or inhibit the growth of a panel of 60 
human tumour cell lines. 
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Figure 4. An exampleofdocking.  

docking. The process consists of two 
components: (i) mechanism for exploring the 
coordinate space of the binding site (possible 
protein-ligand geometries – sometimes called 
poses) and (ii) scoring each possible ligand pose, 
which is then taken as the predicted binding 
mode for that compound.  

Many algorithms have been proposed for 
protein docking. They differ in the handling of 
protein flexibility and scoring function. The first 
algorithm for docking was called DOCK [99]. It 
focuses on shape complementarity which is 
represented by a sphere-based description of 
the geometries of the receptor and the 
potential ligands. Recently, DOCK was extended 
to build up multiple conformations of each of 
the ligands from fragments inside the protein 
binding side [100]. Gold [101] and AutoDock 
[102] make use of genetic algorithms to perform 
a conformational search and dock the potential 
ligands. More reviews of docking algorithms can 
be found in [103, 7]. 

 
 

5. CONCLUSION 
VS is a very important integral part of the drug 
discovery process and is effective in improving 
its efficiency. It is implemented as an iterative 
scheme. Many methods have been introduced 
and reintroduced. The methods used in VS tasks 
have been reviewed in this paper. The review 
emphasises machine learning. As it has become 
crucial as computers are expected to solve 
increasingly complex problems. Moreover it 
become more integrated into our daily lives. 
Current research efforts in VS algorithms focus 
on improving of accuracy rate and 
computational time. Hence, optimization is an 
important part of VS algorithms. There are many 
machine learning techniques introduced these 
day. Hence, it is hard to point which algorithm 
outperforms the others and is the best in VS. 
[59] compared a set of machine learning 
techniques and pointed out their advantages 
and disadvantages. There are also some works 
which compare a set of algorithms on the same 
benchmark – MDDR Database i.e. [86, 87, 104]. 
Machine learning algorithms are now playing a 
role not only in VS tasks but also in other real-
world applications. The author believes that 
they will become a main role in VS tasks in 
coming years because machine learning 
techniques emphasize on obtaining accurate 
predictions and there is also a growing literature 
on machine learning in VS in the past years. 
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